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1 Introduction 

1.1 Motivation and background 

Research on road safety has been conducted for several years, yet many issues still remain 

undisclosed and unsolved. Specifically, the relationships between drivers' characteristics and 

road accidents are not fully understood. It is not possible to accurately predict the odds that a 

driver may be involved in an accident, it is not known any particular insight on how personal 

and socio-economic characteristics might be related to the cause of accidents, and so on. 

The lack of knowledge in this area causes problems in allocating efforts to decrease the 

number of accidents in an efficient manner. It is difficult, for example, to elaborate focused 

training programs that are well suited to drivers with different backgrounds. It is not available 

at hand a risk profile of a driver based on personal or socio-economic group characteristics. 

As a result, the training programs might not produce the expected results. 

Conventional statistical methods, such as Poisson or Negative Binomial regression models, 

have been employed to analyze vehicle accident frequency for many years. However, these 

models have their own assumptions and pre-defined underlying relationship between 

dependent and independent variables. If these assumptions are violated, the model could lead 

to erroneous estimation of accident likelihood. 

Data mining techniques have been commonly employed in business administration, industry, 

and engineering. These techniques do not require any pre-defined underlying relationship 

between target (dependent) variable and predictors (independent variables) and have been 

shown to be a powerful tool, particularly for dealing with classification and prediction 

problems. Therefore, the motivation of this research is the evaluation of the potential of data 

mining in accident analysis and the investigation of relationships between accidents, drivers, 

and road conditions using these techniques with available databases. 

1.2 Research objectives 

The proposed research will investigate several data mining techniques in an attempt to find 

the most suitable method for accident analysis and to understand relationships between driver 

characteristics and accident data. We will explore the underlying variables that can lead to car 

accidents. The expected outcome of the research is a better understanding of the suitability of 
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data mining methods to the safety research field and of the relationships that could help in the 

planning of efforts to reduce car accidents. 

The approach proposed in this research is purposely oriented to explore the accumulated 

knowledge available in existing databases. The significance of this research is in the 

development of new insights related to road accidents. These new insights will provide 

valuable help in developing new methods to increase road safety, particularly in the phase of 

choosing the appropriate means and budget allocation of resources. 

The basic hypothesis of the research is that accidents are not randomly scattered along the 

road network, and that drivers are not involved in accidents at random. The hypothesis is that 

there are complex circumstantial relationships between the several characteristics (driver, 

road, car and so on) and the accident occurrence. 

Similar to Kononov and Janson (2002), we also believe that it is not possible to develop 

efficient means to improve safety without developing the ability to relate frequency and 

severity of accidents to the several variables that might affect them. 
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2 Literature review 

2.1 Data mining 

Knowledge discovery databases (KDD) and data mining aim at extracting useful knowledge 

from large collections of data, meaning to find interesting patterns and/or models that exist in 

databases but are hidden among the large volumes of data. KDD is the process of identifying 

valid, novel, potentially useful, and ultimately understandable patterns/models in data. Data 

mining is a step in the knowledge discovery process consisting of specific algorithms that, 

under some acceptable computational efficiency limitations, find patterns or models in data. 

Data mining can be applied through the implementation of one among several methods. The 

choice of the method to be implemented stems from persistence between the characteristics of 

the data mining method and the nature of the problem addressed. Laube (2001) summarizes 

several data mining techniques for spatial dynamic data. Techniques for classification of 

datasets are diverse and include k-means, k-medoids, multiple linear regression, discriminant 

analysis, decision trees, k-nearest neighbour, neural networks, MARS and kernel methods 

(Loess smoothing). Following is a short description of three data mining methods which are 

more suited to the present research. 

Clustering is a technique used for combining observed objects into groups or clusters such 

that each group or cluster is homogeneous or compact with respect to certain characteristics. 

That is, objects in each group are similar to each other. In addition, each group should be 

different from other groups with respect to the same characteristics. That is, objects of one 

group should be different from the objects of other groups 

The nature of the clusters found enables to simplify the complexity of the entire problem and 

understand better the meaningful differences among the objects. Once clusters have been 

detected, other methods must be applied in order to figure out what the clusters mean. The 

most common method of clustering is the K-means method. 

There are several advantages related to this method. The chief strength of automatic cluster 

detection is that it is undirected. Hence, it can be applied even when there is no prior 

knowledge of the internal structure of a database. In addition, by choosing different distance 

measures, automatic clustering can be applied to almost any kind of data. Most cluster 
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detection techniques require very little manipulation of the input data and there is no need to 

identify particular fields as inputs and others as outputs. 

Along with the advantages mentioned above, the performance of automatic cluster detection 

algorithms is highly dependent on the choice of a distance metric or other similarity measure. 

For example, in the K-means method, the original choice of a value for K determines the 

number of clusters that will be found. If this number does not match the natural structure of 

the data, the technique will not obtain good results. In addition, the aforementioned strength 

of automatic cluster detection as an unsupervised knowledge discovery technique might result 

in clusters that have no practical value. 

Decision trees are powerful and popular tools for classification and prediction as they 

represent rules. Rules can readily be expressed so that we humans can understand them and 

implement them in a database access language. The ability of decision trees to generate rules, 

which can be translated into comprehensible English or SQL, is the greatest strength of this 

technique. Even when a complex domain causes the decision tree to be large and 

multifaceted, it is generally fairly easy to follow any one path through the tree. So the 

explanation for any particular classification or prediction is relatively straightforward. 

The algorithms used to produce decision trees generally yield trees with a low branching 

factor and simple tests at each node. Typical tests include numeric comparisons, set 

membership, and simple conjunctions. When implemented on a computer, these tests translate 

into simple Boolean and integer operations that are fast and inexpensive. Decision-tree 

methods are equally adept at handling continuous and categorical variables. Categorical 

variables, which pose problems for neural networks and statistical techniques, come ready-

made with their own splitting criteria. Continuous variables are equally easy to split by 

picking a threshold in their range of values . 

Decision trees are less appropriate for estimation tasks where the goal is to predict the value 

of a continuous variable such as the sufficient training period for drivers. The method is also 

problematic for time-series data unless a lot of effort is put into presenting the data in such a 

way that trends and sequential patterns are made visible. Some decision-tree algorithms can 

only deal with binary-valued target classes. Others are able to assign records to an arbitrary 

number of classes, but are error-prone when the number of training examples per class gets 

 9



small. This can happen rather quickly in a tree with many levels and/or many branches per 

node . 

Association rule analysis is a method based on transaction analysis and produces rules 

underlying dependencies within the data. The association rules in the form of “if-then” rules 

makes the results easy to understand and facilitates turning the results into action. The 

concepts behind association rules and suggested algorithms for finding such rules were first 

introduced by Agrawal et al. (1993). Generating association rules involves looking for 

frequent item sets in the data. By looking for frequent item sets, it is possible to determine the 

support of each rule. 

This technique can be used to efficiently search for interesting information in large amounts 

of data. Informally, the support of an association rule indicates how frequently that rule 

occurs in the data. The higher the support of the rule, the more prevalent the rule is. 

Confidence is a measure of the reliability of an association rule. The higher the confidence of 

the rule, the more confident we are that the rule really uncovers the underlying relationships 

in the data. It is obvious that we are especially interested in association rules that have a high 

support and a high confidence. 

Association rule analysis is an appropriate technique, when it can be applied, to analyze a 

large set of data for which the starting point is unknown. The technique can handle variable-

length data without the need for summarization, as they can handle transactions without any 

loss of information. In addition, the computations needed to apply association rule analysis 

are rather simple, although the number of computations grows very quickly with the number 

of transactions and the number of different items in the analysis . 

Probably the most difficult problem related to this technique is determining the right set of 

items to use in the analysis in a way that the frequencies of the items used in the analysis are 

about the same. As this method works best when all items have approximately the same 

frequency in the data, items that rarely occur are in very few transactions and will be pruned. 

After the data mining techniques are implemented, it is necessary to interpret (post-process) 

discovered knowledge, especially the interpretation in terms of description and prediction - 

the two primary goals of discovery systems in practice. 
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Feelders et al. (2000) described the different stages in the data mining process and discussed 

some pitfalls and guidelines to circumvent them. In their paper, they exemplified the correct 

procedure to treat data from several sources, using accident data as an example. Despite the 

predominant attention on analysis, data selection and pre-processing are the most time-

consuming activities, and have a substantial influence on ultimate success. Successful data 

mining projects require the involvement of expertise in data mining, company data, and the 

subject area concerned. Despite the attractive suggestion of "fully automatic" data analysis, 

knowledge of the processes behind the data remains indispensable in avoiding the many 

pitfalls of data mining. 

2.2 Data mining implementations in the transportation and traffic safety areas 

There has been an increasing interest in applying data mining techniques in the transportation 

literature in recent years. Smith et al. (2001) investigated the application of statistical 

clustering and classification techniques to aid in the development of traffic signal timing 

plans. The authors used the k-Means Hierarchical Cluster Analysis to identify temporal 

interval break points that support the design of a signal control system. The results of their 

research indicated that advanced data mining techniques held high potential to provide 

automated tools that assist traffic engineers in signal control system design and operations. 

Yamamoto et al. (2002) applied decision trees and production rules, which are among the 

methods used in knowledge discovery and data mining, to investigate drivers’ route choice 

behavior. However, in current practice, relatively little information has been successfully 

extracted from the wealth of data collected by intelligent transportation systems (ITS). 

In recent years, exploratory research has been conducted using data mining techniques with 

the purpose to discover relations between the several characteristics that affect accidents such 

as the road, driver, car, day of week, season, and so on. For example, Cameron (1997) 

indicated that clustering methods are an important tool when analyzing traffic accidents as 

these methods are able to identify groups of road users, vehicles and road segments which 

would be suitable targets for countermeasures. 

Lee et al. (2002) performed a review of classical statistical models that have been widely used 

to analyze road crashes. Chen and Jovanis (2002) show that certain problems may arise when 

using classic statistical analysis on datasets with such large dimensions such as an exponential 
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increase in the number of parameters as the number of variables increases and the invalidity 

of statistical tests as a consequence of sparse data in large contingency tables. 

Mussone et al. (1999) used neural networks to analyze vehicle accident that occurred at 

intersections in Milan, Italy. They chose feed-forward Multi Layer Perceptron neural 

networks using BP learning. The model had 10 input nodes for eight variables (day or night, 

traffic flows circulating in the intersection, number of virtual and real conflict points, 

intersection type, accident type, road surface condition, and weather conditions). The output 

node was called an accident index and was calculated as the ratio between the number of 

accidents for a given intersection and the number of accidents at the most dangerous 

intersection. Results showed that the highest accident index for running over of pedestrian 

occurs at non-signalized intersections at nighttime. 

In the late 90's and beginning of this century there have been several attempts to use data 

mining techniques in road accidents analyses. For example, clustering techniques (Ljubic et 

al., 2002) and spatial data mining (Zeitouni and Chelghoum, 2001) were used to discover 

frequent patterns in accident data. Additionally, the data mining technique of rule induction 

were used to identify rule sets representing interesting subgroups in accident data (see e.g. 

Kavsek et al., 2002). It seems that decision trees (see e.g. Strnad et al., 1998; Clarke et al., 

1998) and neural networks (see e.g. Mussone et al., 1999) were the predominant methods 

used to model and analyze road accidents.  

Ng, Hung and Wong (2002) used a combination of cluster analysis, regression analysis and 

Geographical Information System (GIS) techniques to group homogeneous accident data 

together, to estimate the number of traffic accidents and to assess the risk of traffic accidents 

in a study area. 

Bayam et al. (2005) illustrate how data mining techniques could be used to analyze 

relationships between senior driver characteristics and accidents. The most frequent policy 

recommendation to improve senior drivers' safety is to increase light-controlled intersections 

with protected left-turn signals. 

Chang and Chen (2005) analyzed freeway accident frequency using 2001–2002 accident data 

of National Freeway 1 in Taiwan. The authors developed both decision tree models and a 

negative binomial regression model to establish the empirical relationship between traffic 

accidents and highway geometric variables, traffic characteristics, and environmental factors. 
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The decision tree findings indicated that the average daily traffic volume and precipitation 

variables were the key determinants for freeway accident frequencies. By comparing the 

prediction performance between the decision tree and the negative binomial regression 

models, the authors found that decision tree is a better alternative method for analyzing 

freeway accident frequencies.  

Chong et al. (2005) evaluated the performance of four machine learning paradigms applied to 

modeling the severity of injury that occurred during traffic accidents. They considered neural 

networks trained using hybrid learning approaches, support vector machines, decision trees 

and a concurrent hybrid model involving decision trees and neural networks. Experiment 

results reveal that among the machine learning paradigms considered the hybrid decision tree-

neural network approach outperformed the individual approaches. 

An interesting application of data mining methods to investigate accident data can be found in 

Geurts et al. (2003). In the initial part, the researchers found two main clusters in their 

accident data, obtained from the National Institute of Statistics for the region of Flanders 

(Belgium). The first cluster included 35 accidents in 13 traffic roads, whereas 107 traffic 

accidents in 6 traffic roads were included in cluster 2. After obtaining the clusters, the 

researchers profiled them in terms of accident related data and the degree in which these 

characteristics can discriminate between the clusters. In their research, association rules were 

used to identify accident circumstances that frequently occurred together at high frequency 

accident locations. A comparative analysis between high frequency and low frequency 

accident locations was conducted to determine the discriminating character of the accident 

characteristics of black spots and black zones. For example, they found that sideway 

collisions involving female road users are typical accident pattern for traffic roads with high 

accident risk. This type of accident occurs when the maximum speed limit was 50 Km/h, 

when non priority is given and the age of at least one road user was between 18 and 29. 

Table 1 summarizes the literature on data mining techniques applied to road safety projects 

that were presented in this section. 
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AUTHOR YEAR SUBJECT DATA MINING 
TECHNIQUE 

Cameron 1997 Developing target groups Cluster Analysis 

Strand et al. 1998 Young children injury analysis Decision Trees 

Clarke et al. 1998 Cross-flow turn accidents Decision Trees 

Mussone et al. 1999 Accidents at intersections Neural Networks 

Zeitouni and Chelghoum 2001 Traffic risk analysis Decision Trees 

Ng et al. 2002 Risk of traffic accidents Cluster Analysis 

Geurts et al. 2003 High frequency accidents (black spots) Association Rules 

Brijs et al. 2003 Ranking hazardous sites Bayesian Model 

Kavsek et al. 2002 Subgroups in accident data Rule Induction 

Bayam et al. 2005 Senior drivers' characteristics Decision Trees 

Chong et al. 2005 Injury severity in traffic crashes Decision Trees and 
Neural Networks 

Chang and Chen 2005 Freeway accident frequency Decision Trees 

TABLE 1. Summary of the main data mining applications in the traffic safety area 
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3 Methodological framework  

This section provides information regarding the KDD process and the data mining techniques 

applied in this study. Further, some details regarding the options implemented in the same 

techniques are presented. 

3.1 Description of the KDD process  

Knowledge Discovery and Data Mining (KDD) is a multi-stage process. The overall 

methodology will follow the main stages of KDD process, as depicted in figure 1 and 

subsequently described. 

 

Obtaining and preprocessing data

Data mining

Results interpretation and evaluation

Using discovered knowledge

Problem identification and definition

FIGURE 1. KDD process 

Each one of the above steps has to be performed efficiently and thoroughly, in order to ensure 

the quality of the next step and of the final outcome of the entire process. 

3.1.1 Problem identification and definition 

The first step in the process is the identification and the definition of the problem itself. It 

requires deep understanding of the domain to which the KDD is applied. More specifically, it 

requires the definition of the type of knowledge that the KDD process is aimed to find and the 

data that serves as the basis for the searching process.  
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3.1.2 Obtaining and preprocessing data 

This step is composed of several sub-steps and requires understanding of both the domain to 

which the KDD is applied and of statistical methods for improving data quality. Hence, the 

cooperation of experts from various disciplines is most crucial. 

3.1.2.1 Selecting data sources 

The selection of the data sources reflects the decisions made in the Problem identification and 

definition stage regarding the type of data required for obtaining new knowledge. Ensuring 

that the chosen data sources contain all the relevant data is not sufficient. Considerations 

regarding the completeness of the data and its reliability must be taken into account. These 

aspects are especially important in cases where some of the information is contained in more 

than one data source. 

3.1.2.2 Treating missing and incorrect data 

In many cases the raw data contains missing information and/or incorrect data.  Improving the 

data quality requires the elimination of missing and incorrect data. Alternatively, missing and 

incorrect data can be replaced by valid values. 

Identifying missing data is rather straightforward, while tracking invalid values is more 

complicated. In order to seek incorrect information it is required to define rules for the 

validity of the range of values for each attribute within the data set. 

Once the task of marking the missing and incorrect data is complete, it is required to either 

eliminate it or replace it by reliable values. Naturally, an elimination process is a rather simple 

one, but sometime results in a set of examples that is too small for the data mining process. 

Hence, filling the missing data or replacing invalid values can be done by an inference 

process that stems from the knowledge of the domain for which the data mining is applied. 

3.1.2.3 Data transformation 

Data transformation aims to manipulate the data so that its content and its format are most 

suitable for the data mining process. The transformation process effects the distribution of the 

various features and the structure in which their values are stored. Various data mining 
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techniques present different requirements regarding these characteristics of the data. The 

requirements of each technique should be taken into account prior to its application. 

Handling the distribution of certain features is essential for the one whose values have 

undesired characteristics such as skewed distribution. The desired distribution is achieved by 

applying mathematical transformation function over the data, such as normalization methods 

or smoothing techniques. As emphasized by Witten et al. (2005), this process should be done 

carefully in order to avoid the creation of artifacts data structures, loosing fundamental 

relationships between various features or diminishing extreme values that reflect a rare but 

meaningful phenomenon. 

Handling the format of the data involves the transformation of values into specific structures 

and boundaries. These process should consider structures such as binary representation (true 

or false) or discrete representation (dividing analog values into a finite number of categories 

etc.).  

3.1.2.4 Reducing the data dimension 

Reducing the dimension of the data is required when the size of the database damages the 

efficiency of the data mining process. Harming the efficiency might be reflected either in a 

very long process time or in patterns found by the data mining process that are misleading.  

There are several methods for data reduction that are effective, but one must bear in mind that 

they are all imperfect. The implementation of the various methods should preserve the 

characteristics of the original database. The two main methods are: 

 feature elimination; 

 example elimination. 

Feature elimination involves the examination of the various features while attempting to 

identify those with low predictive potential. Features that are considered to be poor predictors 

or are redundant in relation others, can usually be discarded. It is also possible to combine two 

or more feature into one, as long as this aggregation process preserves the essence of the 

information.  
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When applying example elimination methods, the representative nature of the database should 

be preserved. Hence the statistical sampling rules should be implemented. 

3.1.3 Data mining 

The data mining step is the essence of the KDD process. It involves the application of several 

data mining techniques to the example database. The output of this step is the knowledge 

extracted by the data mining algorithm. Each data mining technique produces the knowledge 

in a different format, such as a decision tree, decision rules, clusters etc. It is often hard to 

predict which technique will produce the best results, and it is unnecessary. Moreover, 

sometimes the aggregation of knowledge produced by more that one technique provides the 

best final solution. 

3.1.4 Results interpretation and evaluation 

After the data mining techniques are implemented, it is necessary to interpret (post-process) 

the discovered knowledge. The interpretation is required in terms of description and 

prediction - the two primary goals of discovery systems in practice. In this stage, as noted by 

Feelders et al. (2000), it is crucial to involve the expertise in data mining, company data, and 

the investigated domain. This involvement is needed to correctly assess underlying processes 

occulted behind the data and to avoid the many pitfalls of data mining. 

3.1.5 Using discovered knowledge 

The final step is to put discovered knowledge in practical use either by documenting it and 

reporting it or by embedding it in a computer system. In first sight, this stage might be 

regarded as trivial and straightforward, but this is not the case. The conclusions drawn from 

the KDD process often reveal the complex nature of the problem and its solutions. This is not 

surprising as data mining techniques are not necessary when dealing with simple problem. 

Hence, the implementation of the new knowledge should often be done in gradually, while 

continuously monitoring the result achieved and the degree to which they fulfill the 

expectations.  

3.2 Data mining methods  

The most widely used methodology in Data Mining is the Cross Industry Standard Process for 

Data Mining, known as CRISP-DM. The CRISP-DM methodology consists of an iterative 

 18



process consisting of the following six phases: business understanding phase, data 

understanding phase, data preparation phase, modeling phase, evaluation phase, and 

deployment phase. The Clementine software employed for this research adopts the CRISP-

DM methodology to analyze problems. 

This section illustrates the data mining techniques applied in the research, by distinguishing 

methods for descriptive and predictive analysis. Descriptive analysis is used to uncover 

groups or clusters of data objects based on similarities among these objects occurring as a 

result of interactions among independent variables. Predictive analysis is used to forecast 

future events or behaviors based on mapping of a set of input values to an output value.  

K-means and Kohonen networks perform the task of segmenting a heterogeneous population 

into more than one homogeneous subgroup, thus they fall under the descriptive analysis part 

of data mining applications. Decision trees, association rules and neural networks examine the 

data and estimate the outcome values of a dependent variable, consequently they fall under 

the predictive analysis part of data mining implementations.  

3.2.1 Descriptive analysis: K-means clustering 

The most popular non-hierarchical clustering method is the K-means technique. “K” refers to 

the number of clusters chosen for a specific execution by the researcher, while “means” refers 

to the cluster being represented by the mean of observations on the selected variables.  

The number of clusters intends to reduce the dimensionality of the problem, but the definition 

of this number is arbitrary and standard practice suggests trying solutions with different 

number of clusters, while examining each time the result in order to comprehend which one is 

most useful. 

The implementation of K-means clustering in this research utilizes the “maximin” method to 

first select cluster centers. Initially, the algorithm positions the first cluster center as the first 

record of the data file, and the remaining centers are created by searching for positions in an 

n-dimensional space that are as far as possible from any other cluster centers already 

generated. The initial cluster centers consequently cover as large a data range as possible. 

Then, the algorithm calculates the Euclidean distance between each record and every cluster 

center and assigns each record to the cluster center with the smallest squared Euclidean 

distance. After the assignment of all the cases to a cluster group is completed, the location of 
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each cluster center is recomputed as the average of all the cases within the cluster. This 

iterative process moves the cluster centers and reiterates until one stopping criteria is reached, 

namely a change in means below a defined threshold or a maximum number of iterations. 

The process in a small dataset with only two input fields is represented graphically in figure 2. 

In a three cluster solution, three largely spaced records are chosen, distances are calculated 

and the cluster centers recalculated accordingly. Consequently, the centers move through the 

two-dimensional space to their final positions. The solid lines represent the boundaries 

between the clusters. 

 
                                                                    start m2 
 
 
 
 
 
 
                                                       start m1 
                                                                                                        start m3 
 
 
 
 
 
 
 

FIGURE 2. Illustration of K-means clustering 

The typology of the input variables for K-means clustering is not an issue, as long as the 

calculation of the Euclidean distance follows the standardization of the data. Fields of range 

type are transformed into a scale that varies between 0 and 1, flag fields are coded such as that 

the false value equals 0 and the true value equals 1, and categorical fields are recoded as flag 

variables for each category. 

The application of K-means clustering to this research proposes exploring results from 

various numbers of groups and fixing interruption criteria for the algorithm in 1×10-6 for the 

variation of mean change or 20 iterations maximum. 
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3.2.2 Descriptive analysis: Kohonen networks 

Kohonen networks are a type of neural network based upon the idea of self-organized 

learning. Since the algorithm does not attempt to predict values of target variables, these 

networks are suitable for clustering.  

The basic assumption considers clusters as formed from patterns that share similar features. 

The network consists of a one or two-dimensional grid of neurons. Each neuron is connected 

to each of the inputs, and weights are considered for each connection. Each neuron is also 

connected to the surrounding networks, as illustrated in figure 3. 
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FIGURE 3. Illustration of a Kohonen network 

The network trains by presenting cases to the grid. Characteristics of each record are 

compared with those of all neurons in the grid, after giving random weights initially. The 

neuron with the most similar pattern “gets” the examined network, and the weights of the 

artificial neuron are adjusted to be more similar to that of the record just acquired. This 

enhances the likelihood of similar records to be captured by the same node. The network 

adjusts the weights of the surrounding neurons as well, as each case enters the examination 

phase. After the data pass through the network a number of times, the result consists of a map 

containing cluster of records corresponding to different types of patterns in the data. Similar 

patterns should be closed in the map than patterns that are dissimilar.  
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The algorithm works in two phases: a first stage with initial large-scale changes and a second 

stage with smaller changes in the weights in order to perform a fine-tuning of the map. The 

algorithm stops when the change in weights between cycles is small or the maximum number 

of iterations is reached. As in any neural network, a learning parameter eta is defined for the 

network process. Kohonen networks consist of two phases and define a different learning 

parameter for each phase. Contemporarily, the algorithm requires the number of neighbors 

around the acquired node for each phase.  

Given the training process that involves long iterations with weight adjustments, the Kohonen 

network takes longer to train than K-means clustering. These networks provide a different and 

valuable view of patterns in the data, and possibly an alternative one with respect to other 

clustering methods. 

The implementation of Kohonen networks in this study considers exploring clusters from 

different dimensions of the map and defining the parameters for both phases. The first phase 

has learning parameter equal to 0.3, neighbors equal to 2 and 20 cycles. The second phase has 

learning parameter equal to 0.1, neighbors equal to 1 and 100 cycles. Convergence is reached 

when the learning parameter arrives to a null value.  

3.2.3 Predictive analysis: decision trees 

Decision trees constitute a method able to forecast or classify future observations according to 

decision rules. If the information is divided in classes, it is possible to utilize the data to 

generate rules able to classify previous cases and new cases with absolute precision.  

This approach is known as advanced induction rules. The decisional process behind the model 

appears clear when observing the tree, with a clear advantage with respect to other techniques 

whose internal logic is difficult to interpret. Further, the process includes automatically in the 

rule only the attributes relevant to the decision, as the irrelevant attributes are ignored and the 

data dimensions are reduced.  

Decision trees are presented with their actual configuration when the description of the 

partition and classification of the data is valuable information, as illustrated in figure 4. 

Decision trees are converted into “if-then” rules to enhance the comprehension of the model 

when the relationship among the elements of a group is relevant. 
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Among the different algorithms for constructing decision trees, C5.0 and CHAID are the 

approaches that split categorical predictors and appear suitable for accident analysis given the 

nature of the fields in the database.  
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FIGURE 4. Illustration of a decision tree 

The algorithm C5.0 divides the records according to the field that yields the maximum 

information gain. Each subgroup defined at the first division is further examined, generally 

according to a different field. The process is reiterated until additional division of the 

subgroups is not feasible, and the lower level subdivisions are examined to remove or cut 

those not giving significant contribution to the model. This process is known as pruning of the 

tree, which is used to decide whether a branch should be “simplified” back toward the parent 

node on the basis of the comparison between the predicted errors for the unpruned branches 

and those for the pruned node. 

Note that the information gain, defined as the difference between the average information 

needed to identify the class of a record within the entire data and the expected information 

required once the data has been partitioned into each outcome of the field being tested, tends 

to favor partitions containing large number of outcomes and to present an advantage for a 

symbolic predictor with many categories over one with few categories. In order to avoid this 

deficiency, the C5.0 algorithm calculates the gain ratio by dividing the information gain for 

the potential information generated by partitioning the data into n outcomes, whereas the 

information gain measures the information relevant to classification. 

 23



When the algorithm C5.0 produces a decision tree, each leafs describes a certain subgroup of 

the training data and each record enters only one single leaf. When the algorithm produces 

induction rules, these rules present a simplified version of the information contained in the 

decision tree and each record applies to more than one rule as well as any rule at all. With the 

decision tree, the forecast for each record is unique. With the induction rules on the other 

hand, the forecast for each record is weighted according to the relevance of the different rules 

for the case itself. 

The CHAID algorithm, acronym of Chi-squared Automatic Interaction Detection, utilizes chi-

squared statistics to identify optimal subdivisions of the dataset. Initially, the CHAID method 

analyzes the contingency tables of each independent variable and verifies their significance by 

means of a chi-squared independency test. Then, the algorithm selects the most significant 

predictor and merges categories of this variable that are yielding similar results, while 

proceeds with the division in subgroups of the data according to the new categories created. 

The merge of the categories when the difference among the remaining categories is equal to 

the difference obtained with the independency test.  

In general, the C5.0 models are stable in presence of missing data and large number of input 

fields, do not require long training time and their interpretation are easier to be interpreted. 

The CHAID algorithm is efficient in presence of missing data and generates trees for 

categorical predictors with more than one branch for each subgroup. For predicting purposes, 

part of the data is used for training and part of the data is used for test. The comparison 

between the actual and the predicted values provides a measure of goodness-of-fit of the 

estimated models. 

The implementation of the C5.0 algorithm in this research proposes the definition of a 75% 

pruning and of a minimum of 20 records per child branch to reduce the effect of the noise in 

the data. Further, the algorithm is instructed to cut the tree in two phases: the first executes a 

local cut that examines the sub-trees and compresses the branches that increase model 

precision, while the second explores the whole tree and compresses weak sub-trees. 

The implementation of the CHAID algorithm in this study introduces the level of significance 

for merging the categories, equal to 0.05 to favor this union, and the convergence criterion, 

with a maximum number of 100 iterations if the optimal value of the chi-squared test is 

inferior to 0.001.  
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3.2.4 Predictive analysis: neural networks 

A neural network consists of a number of neurons that are arranged in layers and are linked to 

every neuron in the previous layer by connections with different strengths or weights 

associated to them. The learning adapts the weights at each iteration and provides the system 

of a method to learn by example.  

The Multi-Layer Perceptron (MLP) is currently the most popular type of neural network. The 

MLP network is a simplified model of the human mind elaboration process, and works by 

simulating and elevated number of simple elaboration units that resemble abstract versions of 

neurons. As illustrated in figure 5, an input layer represents the input fields, an output 

corresponds to the output fields and one or more hidden layers represent the propagation from 

each neuron to each other neuron in the following layer. 
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FIGURE 5. Illustration of a MLP neural network 

The network learning process consists of the exam of single records, the forecast for each case 

and the correction of the weights each time a forecast is incorrect. This process reiterates and 

the network improves its forecasts until one or more interruption criteria are satisfied. 

Initially the network assigns random weights and the initial answers appear without sense in 

the beginning of the learning phase. In the following runs the network encounters examples 
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with known output and the provided answers are compared to these output, consequently the 

weights are updated in order to have the closest possible level of similarity between predicted 

and observed values. The replication of the results increases during the learning phase and the 

network can be applied to future cases with unavailable results.  

Several parameters determine the development of the learning phase. The alpha parameter 

refers to the momentum used in updating the weights when trying to locate the global solution 

and tends to move the weight changes in a constant direction to reduce the training time. The 

eta parameter refers to the learning rate and determines how much adjustment is feasible at 

each update and decreases according to a predetermined number of decay cycles. The 

persistence parameter defines the number of cycles for which the network trains without 

improvement to reach the stopping point.  

Several MLP algorithms are available to the analyst. The Quick method creates a network 

with one hidden layer containing varying number of neurons according to the number and 

type of input fields. The Dynamic training considers an initial network with two hidden layers 

of two neurons each that grows dynamically by adding one neuron at each layer until no 

benefit is given by growing attempts. The Prune method uses a large one or two hidden layer 

network and removes the weakest neurons according to a sensitivity measure until no benefit 

is given by removal attempts. The Exhaustive Prune training technique invokes a more 

exhaustive examination of the network and removes less weak networks at each iteration with 

respect to the Prune technique, as the criteria appear much stricter.  

Following the same concept of the decision trees, also in the neural network applications the 

dataset is divided into a training and a validation part, as the test part consists of part of the 

input data used by the algorithm to determine when the training phase reaches the stop. 

Again, the comparison between the actual and the predicted values provides a measure of 

goodness-of-fit of the constructed neural networks.  

The implementation of MLP in this study uses the Exhaustive Prune training method, where 

alpha and eta are respectively equal to 0.9 and 0.3, the number of decay cycles is equal to 

100, the hidden rate of eliminated neurons is equal to 0.02 at each iteration and the 

persistence is equal to 100 cycles. Overtraining is avoided by considering randomly 50% of 

the dataset for training and the other 50% for test before the validation. 
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3.2.5 Predictive analysis: association rules 

Association rule discovery, generalized rule induction, affinity analysis and market analysis 

are terms that describe a type of pattern algorithm that differentiates itself from decision trees. 

These methods generate rules that are independent of other rules and are not restricted to a 

single output or dependent field, while revealing which values of two or more fields occur 

together typically. Unfortunately, the search space for independent rules is exponential with 

the number of attributes, thus association rule algorithms are computationally expensive.  

Given that an association rule consists of some conditions, also named antecedents, that are 

followed by some conclusions, the evaluation of the rules necessitates two criteria: the 

support is the percentage of records in the dataset for which the conditions hold, the 

confidence is the proportion of records meeting the conditions that also meet the conclusion. 

The support indicates the generality of the rules, while the confidence points out how likely 

the conclusion, given that the conditions are met.  

The Apriori rule discovery algorithm works only with symbolic data that are coded as flag 

fields and indexes and minimizes passes through the complete dataset to generate the 

association rules. The support is generally under 10% to generate more potential rules, and the 

process is usually reiterated by using initially only a portion of data in order to evaluate 

support and confidence optimal for the case study. The confidence is set to 80% or 90% to 

avoid the generation of too many rules in the final runs of the model. 

The Generalized Rule Induction (GRI) algorithm applies to a broader range of data and 

applies a different measure to determine the interest in a particular rule. The method generates 

associations based on the information content of a rule, which is assessed with a J measure 

that trades off support and confidence. GRI accounts for 0% support and minimum 

confidence equal to 50%. 

Association rules are complex to interpret, as exemplified in the literature and illustrated in 

the implementation of these algorithms in the present research. 
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4 Data description  

Assembling, integrating and cleaning the data were the initial task in the accident analysis 

with the illustrated data mining techniques. This section addresses the description of the 

structure of the data, by introducing exploration and verification of the data quality and 

illustrating selection, cleaning and integration of different data sources. 

4.1 Data preparation 

Data about the accidents occurred in Israel were provided by the Central Bureau of Statistics, 

on the condition that the crash resulted in the injury of at least one person involved. This 

research utilized two different databases for accident analysis purposes: the first data source 

contained detailed information about the accidents, while the second data source provided 

additional information about the drivers involved, retrieved by the census data.  

4.1.1 CBS database  

The Central Bureau of Statistics collected information regarding accidents that occurred in 

Israel and resulted in the injury of at least one person involved in the crash. Every year 

thousands of accidents were reported and for each year databases consist of lists of records in 

which each single record corresponds to a single crash. 

For each year, three different files recorded every accident with injury: the accident file, the 

vehicle and driver file, the injured file. Overall, detailed information covered every aspect of 

the accident, from the location to the characteristics of the infrastructure, from the vehicles to 

the persons involved, from the weather condition to the traffic light situation, and so on. The 

following paragraphs present an excursus of the content of the different files. 

The first piece of information in the accident file included information regarding when and 

where the accident occurred: date and time, urban or interurban location, intersection or road 

section, police district. Then, the accident was classified according to three levels of severity, 

along with the fact that someone involved in the crash actually died (fatal), sustained severe 

injuries (severe) or resulted lightly injured (light), and according to the definition of several 

accident types and the description of both the modality and the cause of the crash. Then, the 

infrastructure was described: allowed speed, presence and condition of median barrier, traffic 

light and road signals in general, condition of the surface related also to the weather at the 
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moment the accident occurred. Last, information involving pedestrian and collided objects 

was provided whenever necessary for specific typologies of accidents. 

The vehicle and driver file included records of each vehicle and driver involved in the 

accident. Each record corresponded to one vehicle and its driver, and listed generic 

information such as the type, age, motor, weight and direction of travel of the vehicle, and the 

gender, age, licensing year and past offences of the driver. Clearly, the limited information 

provided in this file with respect to the details of the persons involved explained the further 

enrichment with census data executed in the second data source. 

The injured file comprised records of each person injured, consequently added also pedestrian 

that were not listed in the previous files. Each record counted each injured person, and 

registered generic information such as gender, age, nationality (including the “aliya” process 

for Israelis born abroad), population group, residence and of course type of injury sustained. 

The same limitations applied to the data regarding the drivers. 

One of the initial problems in checking the data quality was the change of coding system from 

year to year by the Central Bureau of Statistics. The consistency of the coding is important for 

analytical purposes, since the lack of common definitions for the same accident type or the 

same median barrier identification could lead to bias in the application of data mining 

methods. With this problem in mind, and with the contemporary objective of analyzing tens 

of thousands of records, accidents occurred in Israel between 2001 and 2004 were selected for 

the initial runs of the data mining methods. In this period the coding system was consistent 

and allowed avoiding potential problems related to the heterogeneity of the data. 

The second problem consisted of the merge between the three data files. Note that the 

accident file contained one accident for each record, but the other two files contained multiple 

records corresponding to the same accident, as long as many drivers, vehicles and injured 

persons were involved. A unique file was composed by considering as a base file the accident 

file, and defining as vehicle 1, vehicle 2 and so on the vehicles. The same applied to the 

drivers and to the injured. At the end, a unique database listed as many records as accidents, 

each with its number of vehicles and injured involved. Note that the limitations of the number 

of columns in the SPSS program, used according to the format provided by the Central 

Bureau of Statistics, advised to eliminate the records with more than eight vehicles and 

consequently drivers involved. 
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The third problem involved the verification of the data quality and consequently the cleaning 

of the data files. The reported accidents contained missing values, either in the form of actual 

missing reported information or in the form of not applicable categorical variable to some 

accidents. Further, the listed records contained also typo errors (for example relative to 

drivers that were too young, such as 2 or 3 years old) that needed to be transformed in missing 

values before processing the data. Data mining techniques actually allow considering missing 

data, as the patterns of information from the large amount of records are not biased by the 

absence of some variable values for some records. The first data source for accident analysis 

consisted of 72,056 records, and the main characteristics of the database are summarized in 

section 4.2.1. 

4.1.2 Enlarged database  

The enlarged database included traffic accident data occurred in the period between 1996 and 

2000, matched with information retrieved from the 1995 Israeli Census data.  

The accident data file was different from the one described in the previous section, as some of 

the information was lost as the price to be paid for matching the census data. In particular, the 

condition of the infrastructure was described less thoroughly, the time at which the accident 

occurred was specified less precisely, and any information about pedestrians was removed, as 

well as the exact location of the crash. Information regarding median and number of ways was 

present for around 20% of the records, days and months were summarized for groups and not 

detailed as for the period between 2000 and 2004, and accordingly information regarding the 

season could not be defined accurately.  

The 1995 Israeli Census included a "short questionnaire" and an "enlarged questionnaire". 

The "short questionnaire" was filled by the entire population, and contained general 

demographics variables, such as gender, age, marital status, religion etc. Twenty percent of 

the households were randomly chosen to answer the "enlarged questionnaire" to represent the 

entire Israeli household population. The "enlarged questionnaire" included details about the 

household, such as number of rooms, apartment ownership etc., and several personal details, 

such as number of children, work status, occupation, education, income etc.  

The file containing the information about the traffic accidents was linked to the census file at 

the individual level by matching the Identification Number ("Teudat Zehut") of the drivers 

who were involved in car accidents. In this way each driver who was implicated in a car 
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accident from 1996 to 2000 was matched to the personal data from the 1995 census. The 

average linkage percent between accident data and the census data was about 92%, and when 

the quality of the linkage was tested by comparing driver's age and gender in the census data 

file to those in the accident data file, it was found that for 97.6% of the merged cases the age 

and gender were identical in both databases, and on additional 2.3% only the gender or the 

age were identical. These findings suggest that the merging procedure was fairly correct and 

that for each driver which was involved in a car accident we succeeded to find his or her data 

on the Census file. 

The enlarged database was created by merging the accident and the census data, and each 

record corresponded to an accident with its corresponding characteristics, personal data of the 

drivers involved and details about their vehicles. Given the difficulties of the matching 

process, only single-vehicle and two-vehicle accidents were included in the analysis, which 

accounted for about 90% of all the accidents. Given the large amount of missing data, caused 

by the fact that only 20% of the population actually filled the enlarged census questionnaire, 

the information was elaborated in order to obtain some categorical variables for data mining 

applications.  

Vehicles were categorized and the number of private, public, light commercial, heavy 

commercial vehicles implicated in each crash, as well as the number of motorcycles and 

bicycles involved, were defined in as many fields. The same procedure was followed for the 

gender and the age of the drivers, the population group, the religion, the place of birth: the 

variables were constructed as differences existing between the drivers (for example if they 

were both Jewish, both born in Israel, both belonging to the same generation that meant their 

age difference was below 10 years) and the content of the constructed categorical fields is 

detailed as input variables for descriptive and predictive analysis of this data source in section 

5.1.  

4.2 Data variables  

The frequency analysis of the constructed data sources provides a first insight into the 

variables that are analyzed through the data mining techniques. 
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4.2.1 CBS database  

The number of accidents analyzed in the period between 2001 and 2004 was equal to 72,056, 

distributed across the period according to figure 6. This graph suggests that there has not been 

a significant decrease in the number of accidents with reported injuries in the four year period, 

with practically an identical number of accidents in 2003 and 2004. 
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FIGURE 6. Number of accidents per year in Israel with reported injury  

The analysis of the severity illustrates that less than 15% of the crashes resulted in a severe or 

fatal injury, as illustrated in figure 7. Nonetheless, fatal accidents decreased during the four 

year period, with a more clear cut decrease between the first two years and the two last years: 

from 471 fatalities in 2001 and 452 fatalities in 2002, the number went down to 415 and 425 

accidents in 2003 and 2004.  

Among the almost twenty typologies of collisions, slightly more than half (51.5%) occurred 

when the front of a vehicle hits the side of another vehicle, 11.3% were front-to-back crashes, 

5.9% and 4.6% were respectively side-to-side and front-to-front accidents. Significantly, more 
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than one tenth of the crashes (14.7%) involved a pedestrian, who was typically crossing on 

zebras without a traffic light (43.6% of these crashes) or out of zebras and far from an 

intersection (34.7% of these crashes). Single-vehicle accidents constituted 23.7% and two-

vehicles collisions corresponded to the 66.1% of the total records. 
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FIGURE 7. Number of accidents per level of injury 

As shown in figure 8, more than 70% of the accidents happened in urban areas. Accordingly, 

the majority of the crashes concentrated in the Tel Aviv area (30.2%), the Haifa area (13.2%), 

the Jerusalem area (8.3%) and the Hasharon area (11.2%). Moreover, accidents were almost 

equally divided between intersections and sections.  

The condition of the infrastructure was reported as good in more than 90% of the cases. 

Accordingly road signals were depicted as good in more than 85% of the records, light 

malfunctioning of road lights and traffic lights is described in around 1% of the accidents. 

Further, the good weather conditions in 90% of the crashes implied good road surface and not 

surprisingly more than 90% of the accidents were imputed to the drivers’ fault. Considering 

that the records registered reported cases, it is possible that there is a tendency to impute the 
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fault to the drivers rather than to the infrastructure conditions. On the other hand, the average 

good conditions of the weather and the roads suggest that these are not the motives causing 

the accidents. Among the possible offenders, slightly more than 8% of the drivers had 

previous offences for speed exceeding and less than 2% reported problems of drugs or alcohol 

at the moment of the crash. 
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FIGURE 8. Number of accidents per location type 

As illustrated in figure 9, more than half of the accidents occur in the evening and at night. 

The evening peak counts more crashes than the morning peak, and apparently during the day 

there is a trend of increasing cases apart from the evening period with less traffic. During the 

week the distribution of the accidents is equally divided across all days, except from Saturday 

when less crashes take place. During the year the distribution of the collisions is equally 

divided across all seasons, without exceptions. 

With respect to the vehicles in the accidents, more than 10% of the collisions had a public 

vehicle involved, more than 20% had a light commercial vehicle implicated and almost 15% 

had a motorcycle drawn in. At least a man was involved in 90% of the accidents, and no 
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woman was implicated in 60% of the crashes, suggesting that men drive more than women 

and likely appear more aggressive. 
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FIGURE 9. Number of accidents per periods during day 

4.2.2 Enlarged database  

The number of accidents analyzed in the period between 1996 and 2000 was equal to 

105,812, distributed across the period according to figure 10. This graph illustrates the 

decrease in the number of accidents with reported injuries across the five year period, with 

stability in the first three years and a sensible diminishment in the other two years. 

The analysis of the severity shows that less than 14% of the collisions resulted in a severe 

injury or a fatality, as illustrated in figure 11. The number of fatalities decreased 

proportionally to the number of total accidents, as the initial three years of this period were 

characterized by over 400 fatalities per year (with a peak in the year 1998) and the remaining 

two years saw this number decreasing to 375 and 388 deaths in 1999 and 2000 respectively.  
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FIGURE 10. Number of accidents per year in Israel with reported injury  
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FIGURE 11. Number of accidents per level of injury 
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Among the different type of crashes, almost half (49.6%) consisted of the front of a vehicle 

hitting the side of another vehicle, 8.8% were front-to-back crashes, 5.7% and 4.1% were 

respectively side-to-side and front-to-front accidents. Significantly, almost one fifth of the 

crashes (18.1%) involved a pedestrian, and note that any information regarding the position or 

the movement of the pedestrians was not detailed in the database. Reminding that only single-

vehicle and two-vehicle crashes were considered in the analysis, due to the restrictions on the 

merging process, single-vehicle accidents were 28.7% of the total crashes analyzed. 

As illustrated in figure 12, more than 80% of the accidents took place in urban areas. 

Accordingly, the majority of the collisions concentrated in the Tel Aviv area (31.9%), the 

Haifa area (11.2%), the Jerusalem area (10.0%) and the Hasharon area (10.3%). While in 

urban areas crashes were almost equally divided between intersections and sections, outside 

these urban areas accidents were prevalently happening far from intersections. 
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FIGURE 12. Number of accidents per location type 

With respect to the other data source, the condition of the infrastructure was not presented, 

while the condition of the median and the number of ways was not reported for around 80% 
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of the records. Good weather conditions were described for 92.2% of the records, and 

accordingly good surface was described in more than 90% of the cases. The cause of the 

accident was described as fault of the driver in almost 90% of the crashes, and among the 

possible offenders, around 4% had previous offences for speed violations. 

With respect to the vehicles in the accidents, more than 6% of the crashes had a public vehicle 

implicated, more than 20% had a light commercial vehicle and almost 15% had a motorcycle 

involved. At least a man was involved in 90% of the accidents, and no woman was implicated 

in 60% of the crashes, suggesting that men drove more than women and likely appeared more 

aggressive, with percentages that are absolutely the same seen for the following four year 

period. As expected from the distribution of the population, over 80% of the drivers were 

Jews, while a limited number was Moslem and only a few were Christian.  
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5 Model elaboration  

Data mining methods described in section 3 were applied to the data sources illustrated in 

section 4 to evaluate descriptive and predictive capabilities of data mining techniques in the 

accident analysis research field. Results focusing on both data sources provide insight into 

different characteristics of accidents. 

Each modeling technique was implemented in Clementine software for data mining: the 

software works according to streams as the one illustrated in figure 13, where the file 

containing the data is read, the types for each variable are defined, the input fields for each 

analysis are selected by filtering the read database and the model options are selected in the 

model nodes. The program executes the model as a stream from the accident data files to the 

data mining technique and produces results that can be visualized in tables, analyzed with 

confusion matrices for predictive purposes and represented with graphical options. Confusion 

matrices measure the prediction accuracy by comparing predicted versus observed outcomes. 

 

FIGURE 13. Example of Clementine stream 

For each technique, databases were elaborated in order to satisfy the data requirements and 

variables were inserted with some general criteria: for descriptive purposes all the variables in 
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the data sources were considered in order to find patterns of similarity among the records; 

categorical variables in which one category was clearly more frequent over the others could 

not constitute a reliable output variable, as the prediction rates could have been high only 

because all the models would have predicted always the dominant category, with the 

exception of the accident severity given the importance of this variable; several variables were 

excluded from consideration when their link to the predictors or to other variables was too 

obvious (for example day and hour, rainy weather and wet surface) and when their nature 

constituted an outcome rather than a predictor (for example the injured persons were a 

consequence of the accident and could not be considered to predict the outcome of the crash). 

5.1 CBS database 

As previously stated, the present results elaborated the accidents between 2001 and 2004. 

Note that for predictive purposes the dataset was divided into a training set, containing the 

accidents occurred between 2001 and 2003, and a test set, containing the crashes happened in 

2004. The nature of the neural network elaboration, that randomly divides the input dataset 

into training and test sets, considers the database accounting for the collisions taken place in 

2004 as the validation set. 

The variables considered for descriptive and predictive analysis are illustrated in table 2. 

Among these variables, four fields were considered as valuable categorical dependent 

variables: day / night, accident severity, accident location and accident type. The first output 

variable was considered for illustrative purposes, especially in the phase of comprehending 

the options of the different data mining techniques and choosing the most suitable methods 

for the analysis of the accidents.  

The three remaining output variables provided valuable information about the classification 

possibilities of accidents according to their location, type and outcome in terms of injuries. 

Accident location appeared the most suitable dependent variable, since the records were quite 

distributed over the categories and since the characteristics of crashes occurring either in 

urban areas or close to intersections were of interest for the analysis. Accident severity 

contained one prevalent category, as light injury was the most frequent outcome, but the 

predictive techniques defined rules for fatal accidents as well. Accident type accounted for 

several categories, but the predictive methods produced good forecast results despite the high 

number of possible outcomes. 
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VARIABLES CATEGORIES 

accident severity 1. fatal accident – 2. severe injury – 3. light injury 

type of accident 

1. pedestrian – 2. front/side crash – 3. front/rear crash – 4. side/side 
crash – 5. front/front crash – 6. collision with stopped car – 7. 
collision with parked car – 8. collision with object – 9. 
rolling/slipping – 10. fire – 11.other crashes  

accident modality 
1. entrance of intersection – 2.exit of intersection – 3. parking or 
gas station – 4. slope – 5. curve – 6. bridge or tunnel – 7. railway 
crossing – 8. straight road or junction – 9. other 

cause of the accident 1. offense of the driver – 2. pedestrian action – 3. passenger 
behavior – 4. cyclist behavior – 5. car malfunctioning – 6. other 

location of the accident 1. urban intersection – 2. urban section – 3. interurban intersection 
– 4. interurban section 

allowed speed 1. 50 km/h – 2. 60 km/h – 3. 70 km/h – 4. 80 km/h – 5. 90 km/h – 
6. 100 km/h 

day / night 1. day – 2. night 

day of the week 1. Sunday – 2. Monday – 3. Tuesday – 4. Wednesday – 5. Thursday 
6. Friday – 7. Saturday 

season of the accident 1. spring – 2. summer – 3. autumn – 4. winter 

weather conditions 1. clear – 2. rainy – 3. hot – 4. foggy – 5. other 

number of ways on the road 1. one way – 2. two ways with separation line – 3. two ways 
without separation line – 4. other 

median on the road 1. painted line – 2. safety rail – 3. no safety rail – 4. non built 
separation – 5. other 

shoulders of the road 1. good condition – 2. bad condition – 3. rough road – 4. bad 
condition and rough road 

width of the road 1. up to 5 m. – 2. 5 to 7 m. – 3. 7 to 10.5 m. – 4. 10.5 to 14 m. – 5. 
over 14 m. 

regulation of intersection 
1. no control – 2. functioning traffic light – 3. malfunctioning 
traffic light – 4. blinking yellow – 5. stop sign – 6. right of way sign 
– 7. other 

illumination on the road 
1. normal daylight – 2. limited visibility because of the weather – 3. 
night with lighting – 4. night without lighting – 5. malfunctioning 
lighting – 6. unknown night conditions  

surface conditions of the road 1. dry – 2. wet from water – 3. wet from slippery material – 4. 
covered with mud – 5. covered with sand – 6. other 

location of crossing pedestrians 

1. crossing on zebras with traffic light – 2. crossing on zebras 
without traffic light – 3. crossing out of zebras next to an 
intersection - 4. crossing out of zebras far from an intersection – 5. 
not specified crossing position 

location of standing pedestrians 

1. pedestrian standing on the road - 2. pedestrian standing on the 
median - 3. pedestrian standing on the sidewalk or shoulders - 4. 
pedestrian playing on the road - 5. pedestrian in the traffic direction 
- 6. pedestrian against the traffic direction 

type of collision with objects 
1. with street signal – 2. with safety rail – 3. with building – 4. with 
bridge – 5. with light or phone pole – 6. with tree – 7. with other 
object 

distance of colliding objects 1. up to 1 m. – 2. up to 3 m. – 3. object on the road – 4. object on 
the median – 5. unknown position of the object 

vehicles involved 1. one vehicle – 2. two vehicles – 3. three vehicles – 4. fore or more 
vehicles 

TABLE 2. Categorical variables for descriptive and predictive analysis – CBS database 
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VARIABLES CATEGORIES 

speed offences 1. at least one driver with previous speed violations – 2. no driver 
with previous speed violations 

alcohol or drugs offences 1. at least one driver with previous alcohol or drug violations – 2. 
no driver with previous alcohol or drug violations 

private vehicles 
0. no private vehicle involved - 1. one private vehicle involved – 2 
two private vehicles involved – 3 three private vehicles involved – 
4. four or more private vehicles involved 

public vehicles 
0. no public vehicle involved - 1. one public vehicle involved – 2 
two public vehicles involved – 3 three or more public vehicles 
involved 

light commercial vehicles 
0. no light commercial vehicle involved - 1. one light commercial 
vehicle involved – 2 two light commercial vehicles involved – 3 
three or more light commercial vehicles involved 

heavy commercial vehicles 
0. no heavy commercial vehicle involved - 1. one heavy 
commercial vehicle involved – 2 two heavy commercial vehicles 
involved – 3 three or more heavy commercial vehicles involved 

motorcycles 0. no motorcycle involved - 1. one motorcycle involved – 2 two 
motorcycles involved – 3 three or more motorcycles involved 

bicycles 0. no bicycle involved - 1. one bicycle involved – 2 two bicycles 
involved – 3 three or more bicycles involved 

TABLE 2. Categorical variables for descriptive and predictive analysis – CBS database (continued) 

5.1.1 Cluster analysis 

The definition of the considered number of clusters constituted a compromise between a small 

number, which would have given problems in terms of excessive dimension of the clusters, 

and a large number, which would have caused difficulties in terms of semantic interpretation 

of the clusters. Further, different techniques were applied with the same number of clusters, in 

order to evaluate whether the implementation of different data mining methods had an effect 

on the results. 

K-means clustering was applied by testing solutions with 5, 6 and 7 clusters. Kohonen 

networks were constructed by experimenting linear maps with 5 and 6 clusters for method 

comparison, as well as bi-dimensional maps. Unfortunately, these maps did not converge to a 

clustering solution for every dimension chosen. For example maps 2×4 or 3×4 showed the 

tendency during the algorithm processing of all the records to appear strongly connected to 

only part of the clusters because of the impossibility to define groups with the similarity 

property that characterizes neighboring clusters in the Kohonen structure.  

Table 3 illustrates the number of records assigned to each cluster for the three runs of K-

means algorithm and the three runs of Kohonen networks. As detailed in the following 

paragraphs, increasing the number of clusters had a different effect on clusters generated by 
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K-means or by Kohonen networks. Even though the increase could provide benefit in terms of 

interpretation, it is visible from the nine clusters solution obtained with a Kohonen 3×3 map 

that there are three clusters containing less than 3000 records that most likely introduce 

problems in terms of general description. 

 

K-MEANS K-MEANS K-MEANS KOHONEN KOHONEN KOHONEN NUMBER 
OF 

RECORDS 5 
CLUSTERS 

6 
CLUSTERS 

7 
CLUSTERS 

1×5  
MAP 

1×6  
MAP 

3×3  
MAP 

cluster 1 23510 15695 15471 19650 15822 13226 

cluster 2 6806 3736 3696 6364 6884 3362 

cluster 3 15441 10402 10349 17573 11873 14370 

cluster 4 8515 7837 6383 9946 12249 4880 

cluster 5 17784 21954 9616 18523 7243 279 

cluster 6  12432 12235  17985 2740 

cluster 7   14306   15226 

cluster 8      2057 

cluster 9      15916 

TABLE 3. Number of records per cluster – CBS database 

The semantic interpretation of the clusters constitutes a difficult task, and related to the 

frequency of each category of the input variables in the records belonging to each cluster. 

The first solution with 5 groups obtained with the K-means algorithm defined the following 

clusters: 

1. front to side accidents that occurred in urban intersections, where the median was not 

constituted by a safety rail and the allowed speed was 50 km/h (23,510 cases); 

2. accidents that happened in autumn or winter in rainy conditions and consequently wet 

road surface, mainly in road sections and not in road junctions (6,806 cases); 
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3. accident that took place outside urban areas, in large two way roads where the allowed 

speed was over 80 km/h and there was a significant percentage of collisions with the 

safety rail (15,441 cases); 

4. accidents that involved pedestrians, with the majority of them crossing on zebras 

without traffic lights or crossing not in intersections, in two way roads without a safety 

rail as a median (8,515 cases); 

5. accidents that occurred in urban areas, in road sections without a white line to separate 

the two ways, where the majority of the collisions were front to side or front to back 

crashes (17,784 cases). 

The solution with 6 clusters divided the first cluster into accidents that happen during day and 

accidents that happen during night. The solution with 7 clusters maintained the groups 

obtained with 6 clusters and split the third cluster again according to crashes occurring during 

day versus crashes occurring during night.  

The first solution from the Kohonen network with 1×5 map defined different clusters: 

1. front to side accidents that happened at night, mostly in urban areas and during 

autumn and winter with rainy conditions (19,650 cases); 

2. accidents that took place not in road junctions at night, both on two-way roads where 

the allowed speed was 50 km/h and on two-way roads where the allowed speed was 

over 80 km/h (6,364 cases); 

3. accidents that occurred not in road intersections at day, mostly on two-way roads 

without white line to separate them, and with most of the accidents involving 

pedestrians (17,573 cases); 

4. front to side accidents that took place at day, mostly in urban areas and during spring 

and summer (9,946 cases); 

5. front to side accidents that happened at day, mostly in intersection and preferably 

inside urban areas, where there was not safety rail as median (18,523 cases). 

The division of larger clusters into smaller clusters, observed for K-means algorithm when 

increasing the number of groups, was not verified with the Kohonen networks. The Kohonen 
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network with 1×6 map actually defined different clusters with respect to the previous 1×5 

map: 

1. front to side accidents that happened during day in urban intersections, either in one-

way or two-way roads without white line, and where the median was not a safety rail 

(15,822 cases); 

2. accidents that occurred during day in urban areas, when the traffic lights were not 

working or there was a right or way or stop sign, and mostly with pedestrians involved 

(6,884 cases); 

3. accidents that took place during day in urban areas and not in intersections, mostly 

involving pedestrians that crossed large roads without safety rail (11,873 cases); 

4. accidents that happened during day outside urban areas, mostly in roads where the 

allowed speed was at least 90 km/h and where the median could be constituted by a 

safety rail (12,249 cases); 

5. accidents that occurred at night outside urban areas, mostly during autumn and winter 

on large roads where the allowed speed reached 80 km/h and the median was mainly 

constituted by a safety rail (7,243 cases); 

6. front to side accidents that took place in urban areas during the night, mostly in 

autumn and winter on narrow roads without safety rail and often even without white 

line to separate the two ways (17,985 cases). 

The solution from the Kohonen network with 3×3 map is far more complicated to interpret, 

especially since at least four clusters present similar characteristics without a clear cut 

distinction among one another. The remaining five clusters appear more similar to the first 

solution rather than to the second, also in accordance to the fact that the initial solution 

resulted by a 1×5 map. 

Note that the results from the Kohonen clusters gave evidence to the importance of the 

vicinity property, as both solutions consider night and day accidents in adjacent groups. The 

importance of this property is also proven by the fact that the non-linear maps did not 

converge for every dimension, and by the fact that the solutions of this clustering technique 

appear to be not strictly interrelated among one another, especially in the 3×3 map where the 
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least significant clusters were positioned in the middle of the map and separated the remaining 

resulting groups. 

Also note that the clusters obtained with different techniques have different characteristics: 

notably, there is not a group containing all pedestrian accidents in the Kohonen clustering. 

Given the differences in the algorithms, it should not be surprising that the two clustering 

technique worked into two different directions: K-means created clusters based on the 

location and the typology of the accident, while Kohonen networks generated clusters based 

on the day or night attribute and the location.  

Given the fact that Kohonen networks did not work properly for bi-dimensional maps, and 

that K-means divided the crashes by typology of the accident rather than the more trivial day 

or night variable, results from the implementation of the K-means algorithm appear more 

interesting from the accident analysis perspective. Further, Kohonen networks were far more 

expensive from the computational perspective, with at least half an hour necessary to 

converge when K-means algorithm processes the same amount of data in less than two 

minutes. 

5.1.2 Decision trees 

Decision trees produced hundreds of rules that helped classifying the accidents according to 

the chosen dependent variables. The following sections detail the most interesting results for 

each output variable considered in the first phase of the study. 

5.1.2.1 Day / night 

As previously explained, this first dependent variable was considered for illustrative and 

testing purposes when examining the data mining techniques to be applied throughout the 

research.  

According to the C5.0 algorithm, the most relevant node for the construction of the tree was 

the involvement of heavy commercial vehicles in collisions that occurred prevalently during 

day. According to the CHAID algorithm, the most important node to classify the same records 

was the season in which the crash actually took place. The similarity with the other technique 

was evident when considering that the second most significant node for the C5.0 algorithm 

was also the season, and that the following most relevant node was the type of accident for 

both algorithms. The predictive ability for C5.0 was equal to 66.5% and for CHAID was 
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equal to 65.6%, both algorithms missing the majority of the target for the night accidents. 

Accordingly to these preliminary findings, the two algorithms perform in a similar way with 

respect to the first dependent variable.  

Some rules are illustrated in tables 4 and 5 for both algorithms, after a selection that resulted 

from pruning the tree, considering the highest confidence levels and not accounting for the 

most trivial findings if not for illustrative purposes. 

 
 IF an accident occurs with no heavy commercial vehicle involved, 
AND the accident happens in the spring, 
AND the accident occurs with at least one pedestrian involved 
THEN the likelihood of the accident occurring during day is 77.4% 
IF an accident occurs with no heavy commercial vehicle involved, 
AND the accident happens in the summer, 
AND the allowed speed is 50 km/h, 
AND no driver involved committed a previous speed violation, 
AND the accident occurs with at least one pedestrian involved 
THEN the likelihood of the accident occurring during day is 74.7% 
IF an accident occurs with no heavy commercial vehicle involved, 
AND the accident happens in the spring, 
AND the accident is a front to side collision, 
THEN the likelihood of the accident occurring during day is 71.7% 
IF an accident occurs with no heavy commercial vehicle involved, 
AND an accident occurs with at least one light commercial vehicle involved,  
AND the accident happens in the winter, 
AND the road surface is wet, 
AND the accident is a front to back collision 
THEN the likelihood of the accident occurring during day is 70.4% 
IF an accident occurs with no heavy commercial vehicle involved, 
AND the accident happens in the winter, 
AND the accident happens with clear weather, 
AND the allowed speed is 50 km/h, 
AND the accident occurs with at least one pedestrian involved 
THEN the likelihood of the accident occurring during day is 67.9% 
IF an accident occurs with no heavy commercial vehicle involved, 
AND the accident happens in the winter, 
AND the accident is a collision with an object 
THEN the likelihood of the accident occurring during night is 69.3% 
IF an accident occurs with no heavy commercial vehicle involved, 
AND the accident occurs with at least one private vehicle involved,  
AND the accident happens in the winter, 
AND the accident is a car rolling 
THEN the likelihood of the accident occurring during night is 68.3% 
IF an accident occurs with no heavy commercial vehicle involved, 
AND the accident happens in the winter, 
AND the accident is a collision with a parked vehicle 
THEN the likelihood of the accident occurring during night is 67.6% 
IF an accident occurs with no heavy commercial vehicle involved, 
AND the accident happens in the winter, 
AND the accident happens in rainy weather, 
AND the accident occurs with at least one pedestrian involved 
THEN the likelihood of the accident occurring during night is 64.2% 

TABLE 4. Rules for C5.0 tree with CBS data - day / night 
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Given the prevalence of day accidents over night accidents, it was not surprising noticing the 

highest number of rules with a higher confidence level for crashes taking place during day. 

On one hand, the characteristic of the CHAID algorithm to merge the categories was evident 

from the results and helped increasing the level of confidence of the rules. On the other hand, 

the C5.0 algorithm appeared easier to interpret because of the clear-cut definition of the rules. 

 
IF the accident happens in the spring, 
AND the accident is either a front to side, a front to back or a front to front collision, 
AND the traffic light is not functioning or there is a either a stop or a right of way sign, 
AND the accident occurs with at least one private vehicle involved, 
AND the accident occurs with at least one woman involved 
THEN the likelihood of the accident occurring during day is 83.7% 
IF the accident happens in the summer, 
AND the accident is either a front to side or front to back collision or at least a pedestrian is involved, 
AND the accident occurs with at least two women involved 
THEN the likelihood of the accident occurring during day is 83.6% 
IF the accident happens in the spring, 
AND the accident is either a front to side or a front to back collision, 
AND the accident occurs without any private vehicle involved, 
AND the accident occurs with no woman involved 
THEN the likelihood of the accident occurring during day is 78.5% 
IF the accident happens in the spring, 
AND the accident is either a front to side or a front to back collision, 
AND the accident occurs with one private vehicle involved, 
AND the accident occurs with no woman involved 
THEN the likelihood of the accident occurring during day is 72.8% 
IF the accident happens in the winter, 
AND the accident is either a front to side or a front to front collision, 
AND the traffic light is not functioning or there is a either a stop or a right of way sign, 
AND the accident occurs with one private vehicle involved, 
AND the accident occurs with at least one woman involved 
THEN the likelihood of the accident occurring during day is 72.8% 
IF the accident happens in the autumn, 
AND the accident is either a back to side or a side to side collision or at least a pedestrian is involved, 
AND the accident occurs with at least a woman involved  
THEN the likelihood of the accident occurring during day is 68.4% 
IF the accident happens in the winter, 
AND the accident is either a collision with an object or with a parked vehicle 
THEN the likelihood of the accident occurring during night is 68.6% 
IF the accident happens in the autumn, 
AND the accident is either a collision with an object or with an animal 
THEN the likelihood of the accident occurring during night is 64.6% 

TABLE 5. Rules for CHAID tree with CBS data - day / night 

The most interesting rules for classification of daily accidents concern the hit of pedestrians in 

winter with bad weather, the presence of light commercial vehicles in front to back collisions 

and the possibility of the influence of the rain in autumn and winter. The most relevant rules 

to classify night crashes concern the collision with objects, parked vehicles or pedestrians. For 

the former accidents, the inadequate distance maintained between vehicles could explain part 
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of the problem. For the latter accidents, the actual lack of illumination on the streets at night 

could explain the issue, even though the decision tree did not determine if the limited 

visibility is responsible for the accident. 

5.1.2.2 Accident severity 

Considering as categorical dependent variable the severity of the accident, the decision trees 

from the implementation of the two applied algorithms resulted extremely different. From the 

C5.0 technique, the initial nodes were the number of vehicles implicated, the presence of a 

bicycle or a commercial vehicle in the collision, the existence of previous speed violations by 

at least one of the drivers and the involvement of a pedestrian. From the CHAID technique, 

the initial nodes were the type of accident, the location of the crash and the presence of 

private vehicles. The predictive ability for C5.0 was equal to 87.2% and for CHAID was 

equal to 86.6%, but significantly only the C5.0 algorithm was able to predict fatal accidents 

and consequently performed better than the CHAID algorithm. 

Some of the rules for fatal and severe accidents are summarized in table 6 and table 7 for both 

algorithms, and these tables emphasize that the C5.0 tree performed better the classification of 

the accidents according to the severity of the collision. In fact, no rule for fatal accidents and 

only one rule for crashes resulting in severe injuries were produced by the CHAID method. 

 
IF the accident occurs with only one vehicle involved, 
AND the allowed speed is 90 km/h, 
AND the accident occurs with at least one pedestrian involved 
THEN the likelihood of the accident resulting fatal is 77.5% 
IF the accident occurs with only one vehicle involved, 
AND the allowed speed is 100 km/h, 
AND the accident occurs with at least one pedestrian involved and crossing the road 
THEN the likelihood of the accident resulting fatal is 75.0% 
IF the accident occurs with only one vehicle involved, 
AND the involved vehicle is a public vehicle, 
AND the allowed speed is 100 km/h, 
THEN the likelihood of the accident resulting fatal is 64.4% 
IF the accident occurs with only one vehicle involved, 
AND the allowed speed is 70 km/h, 
AND the width of the road where the accident occurs is more than 10.5 m., 
AND the accident occurs with at least one pedestrian involved and crossing the road, 
AND the accident happens in clear weather  
THEN the likelihood of the accident resulting in a severe injury is 70.8% 

TABLE 6. Rules for C5.0 tree with CBS data - accident severity 
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IF the accident occurs with only one vehicle involved, 
AND the allowed speed is 90 km/h, 
AND the accident occurs with at least one pedestrian involved and crossing the road, 
AND the only light in the location of the accident is the natural night light, 
AND the accident happens in the autumn 
THEN the likelihood of the accident resulting in a severe injury is 65.1% 
IF the accident occurs with only one vehicle involved, 
AND the involved vehicle is a commercial vehicle, 
AND the accident occurs with at least one pedestrian involved, 
AND the allowed speed is 50 km/h, 
AND the accident occurs in an evening before the holidays 
THEN the likelihood of the accident resulting in a severe injury is 64.2% 
IF the accident occurs with more than one vehicle involved, 
AND the accident occurs with at least one bicycle involved, 
AND the accident occurs with at least one commercial vehicle involved, 
AND the accident takes place inside an urban area and not in an intersection 
THEN the likelihood of the accident resulting in a severe injury is 63.6% 

TABLE 6. Rules for C5.0 tree with CBS data - accident severity (continued) 

IF the accident happens in the spring, 
AND the allowed speed is over 60 km/h 
AND the accident occurs with at least one pedestrian involved and crossing the road 
THEN the likelihood of the accident resulting in a severe injury is 41.2% 

TABLE 7. Rules for CHAID tree with CBS data - accident severity 

Fatal accidents mainly involved pedestrians that crossed roads where the allowed speed was 

high or the width was broad, most likely a highway or one of the major roads of the country. 

This phenomenon is frequently seen in Israel, especially where villages are extremely close to 

these arterials. Further, the involvement of bicycles and commercial vehicles increased the 

likelihood of accidents to result in fatalities, especially during night and in seasons like 

autumn and winter. Last, rules for fatal and severe accidents pointed out that single-vehicle 

crashes produced the most severe outcomes in terms of injuries. 

5.1.2.3 Accident location 

Considering the location of the accident as the dependent variable, the generated decision 

trees were not similar, but also not totally different. For the C5.0 tree, the most significant 

variables consisted of the allowed speed, followed by the typology of the accident, the 

existence of previous speed violations by at least one of the involved drivers and the number 

of vehicles implicated in the crash. For the CHAID algorithm, the most relevant fields 

consisted of the regulation of the intersections, followed by the allowed speed, the number 

and the type of vehicles involved and the condition of the median. The prediction accuracy 
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was also significantly different, as for the C5.0 tree was equal to 67.1% and for the CHAID 

tree was equal to 87.8%. 

The confusion matrices in table 8 and table 9 provide insight into the different predictive 

performances between the two algorithms. Note that the rows represent the actual 

observations and the columns the predicted values, consequently the elements in the diagonal 

constitute the correct predictions for accidents occurred in 2004, based on the models 

estimated with the accidents taken place between 2001 and 2003.  

 

 INTERURBAN 
INTERSECTION 

INTERURBAN 
SECTION 

URBAN 
INTERSECTION 

URBAN 
SECTION 

INTERURBAN 
INTERSECTION 1000 458 460 192 

INTERURBAN 
SECTION 371 1758 143 341 

URBAN 
INTERSECTION 44 29 4966 1805 

URBAN 
SECTION 47 139 1812 4172 

TABLE 8. Confusion matrix for C5.0 tree with CBS data - accident location 

 INTERURBAN 
INTERSECTION 

INTERURBAN 
SECTION 

URBAN 
INTERSECTION 

URBAN 
SECTION 

INTERURBAN 
INTERSECTION 1270 133 638 69 

INTERURBAN 
SECTION 0 2037 0 576 

URBAN 
INTERSECTION 33 4 6242 565 

URBAN 
SECTION 0 147 0 6023 

TABLE 9. Confusion matrix for CHAID tree with CBS data - accident location 

The C5.0 algorithm performed extremely well when predicting crashes that took place outside 

an urban area, but confused the collisions inside urban areas as the majority of the incorrect 

forecasts consisted of urban accidents that occurred in road junctions and were predicted to 

take place in a section and vice versa. The CHAID algorithm did not present the same 

problem, and the only errors consisted of an excess in predicting accidents in urban areas. 
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Some of the rules with higher confidence level are presented in tables 10 and 11. The 

classification of the accidents with respect to the location provided evidence to some aspects. 

Accidents in interurban intersections occurred mainly in conditions of limited visibility, for 

example at night with only the natural night light available, and when the median was not 

constructed. This leads to think about obvious problems related to excessive speed. This 

concept was confirmed by the rules regarding crashes in interurban sections, for example with 

single-vehicle accidents where a car was getting off the road. In urban areas, pedestrians, 

cyclists and motorcyclists were often involved: in this case supposedly sometimes their 

behavior caused the crashes that resulted immediately in severe consequences. 

 
IF the speed allowed is 80 km/h, 
AND the accident occurs with more than one vehicle involved, 
AND the accident is a front to side collision, 
AND the only light in the location of the accident is the natural night light 
THEN the likelihood of the accident occurring in an interurban intersection is 75.3% 
IF the speed allowed is 90 km/h, 
AND the accident occurs with more than one vehicle involved, 
AND the accident is a front to side collision, 
AND the only light in the location of the accident is the natural night light 
THEN the likelihood of the accident occurring in an interurban intersection is 75.0% 
IF the speed allowed is 90 km/h, 
AND the accident occurs with more than two vehicles involved, 
AND the accident is a front to side collision, 
AND the light in the location of the accident is the natural daily light, 
AND the median is not constituted by a safety rail 
THEN the likelihood of the accident occurring in an interurban intersection is 66.8% 
IF the speed allowed is 90 km/h, 
AND the accident occurs with more than one vehicle involved, 
AND the accident is a front to back collision, 
AND the accident results in fatalities 
THEN the likelihood of the accident occurring in an interurban section is 92.2% 
IF the speed allowed is 80 km/h, 
AND the accident occurs with only one vehicle involved, 
AND the accident is the getting off the road of a car, 
THEN the likelihood of the accident occurring in an interurban section is 89.1% 
IF the speed allowed is 90 km/h, 
AND the accident occurs with more than one vehicle involved, 
AND the accident is a front to back collision, 
AND the accident results in severe injuries 
THEN the likelihood of the accident occurring in an interurban section is 85.2% 
IF the speed allowed is 80 km/h, 
AND the accident occurs with only one vehicle involved, 
AND the accident is a front to side collision, 
THEN the likelihood of the accident occurring in an interurban section is 85.1% 
IF the speed allowed is 80 km/h, 
AND the accident occurs with more than one vehicle involved, 
AND the accident is a front to front collision, 
THEN the likelihood of the accident occurring in an interurban section is 75.6% 

TABLE 10. Rules for C5.0 tree with CBS data - accident location 
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IF the speed allowed is 50 km/h, 
AND the accident is a front to side collision, 
AND the road signs in the location of the accident are in poor conditions 
THEN the likelihood of the accident occurring in an urban intersection is 75.6% 
IF the speed allowed is 50 km/h, 
AND the accident is a front to side collision, 
AND the road signs in the location of the accident are in poor conditions, 
AND the accident results in light injuries, 
AND the width of the road where the accident occurs is between 5 and 7 m. 
THEN the likelihood of the accident occurring in an urban intersection is 71.4% 
IF the speed allowed is 50 km/h, 
AND the accident occurs with at least one pedestrian involved and crossing the road, 
AND the road signs in the location of the accident are in good conditions, 
AND the accident results in severe injuries, 
AND the cause of the accident is the fault of the driver, 
AND the width of the road where the accident occurs is between 7 and 10.5 m. 
THEN the likelihood of the accident occurring in an urban intersection is 64.4% 
IF the speed allowed is 50 km/h, 
AND the accident is a front to side collision, 
AND at least one of the drivers involved has a previous speed violation, 
AND the accident occurs with at least one motorcycle involved,  
AND the road signs in the location of the accident are in good conditions 
THEN the likelihood of the accident occurring in an urban intersection is 63.5% 
IF the speed allowed is 50 km/h, 
AND the accident occurs with at least one pedestrian involved, 
AND the accident occurs with a parking vehicle 
THEN the likelihood of the accident occurring in an urban section is 92.0% 
IF the speed allowed is 50 km/h, 
AND the accident occurs with at least one pedestrian involved  
THEN the likelihood of the accident occurring in an urban section is 83.7% 
IF the speed allowed is 50 km/h, 
AND the accident is a front to side collision, 
AND the road signs in the location of the accident are in poor conditions, 
AND the road shoulders in the location of the accident are in poor conditions 
THEN the likelihood of the accident occurring in an urban section is 76.7% 

TABLE 10. Rules for C5.0 tree with CBS data - accident location (continued) 

IF the regulation of the intersection is a not working traffic light, 
AND the allowed speed is over 90 km/h 
THEN the likelihood of the accident occurring in an interurban intersection is 96.9% 
IF the regulation of the intersection is a blinking yellow traffic light, a “stop” or a “right of way” sign, 
AND the allowed speed is between 80 and 90 km/h 
THEN the likelihood of the accident occurring in an interurban intersection is 96.2% 
IF the regulation of the intersection is a not working traffic light, 
AND the allowed speed is 90 km/h, 
AND the median is constituted by a safety rail 
THEN the likelihood of the accident occurring in an interurban section is 95.6% 
IF the regulation of the intersection is a not working traffic light, 
AND the allowed speed is over 80 km/h, 
AND accident is either a collision with an object or the rolling of a car 
THEN the likelihood of the accident occurring in an interurban section is 85.7% 
IF the regulation of the intersection is a blinking yellow traffic light, a “stop” or a “right of way” sign, 
AND the allowed speed is 50 km/h, 
AND the accident occurs with at least one motorcycle involved 
THEN the likelihood of the accident occurring in an urban intersection is 99.3% 

TABLE 11. Rules for CHAID tree with CBS data - accident location 
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IF the regulation of the intersection is a not working traffic light, 
AND the allowed speed is 50 km/h, 
AND the accident type is a front to side collision 
THEN the likelihood of the accident occurring in an urban intersection is 96.1% 
IF the regulation of the intersection is a not working traffic light, 
AND the allowed speed is 50 km/h, 
AND the accident occurs with at least a pedestrian involved,  
AND the two-way road does not present a white line in the location of the accident, 
AND the accident results in fatalities or severe injuries 
THEN the likelihood of the accident occurring in an urban section is 95.6% 
IF the regulation of the intersection is a not working traffic light, 
AND the allowed speed is 50 km/h, 
AND the accident is a front to side collision,  
AND the two-way road either presents or not a white line in the location of the accident, 
AND the accident occurs with at least one motorcycle involved 
THEN the likelihood of the accident occurring in an urban section is 88.6% 

TABLE 11. Rules for CHAID tree with CBS data - accident location (continued) 

Interestingly, with different dependent variables the two techniques showed different 

predictive capabilities: with accident location the CHAID tree outperformed the C5.0, while 

exactly the opposite happened with accident severity. 

5.1.2.4 Accident type 

Using accident type as output field could have raised questions about the predictive ability of 

the applied algorithms, as the high number of categories could affect forecast precision. Both 

algorithms considered the number of vehicle involved as the most significant variable, but 

while for the C5.0 tree the following relevant fields were the presence of pedestrians, bicycles 

and objects, for the CHAID tree were not only on the presence of pedestrians, but also the 

location of the accident and the conditions of both traffic lights and medians. The prediction 

accuracy for the C5.0 tree was equal to 76.2% and for the CHAID tree was equal to 73.0%, 

satisfying results when considering the number of categories. In particular, good predictive 

ability was shown for front to side, front to back and object collisions, as well as crashes with 

pedestrians involved. 

Some of the rules for accident type predictions are summarized in table 12 and table 13 for 

some of the most frequent crashes. Some similarities are retrievable from the tables, only the 

confidence level of the C5.0 tree is higher and explains the better prediction accuracy. Not 

surprisingly, the absence of traffic lights sees the majority of the front/side collision for the 

likely not respect of the road signs, the collisions with pedestrians involve single vehicles in 

almost all the cases, and previous speed violations appear related with colliding with an 

object. This dependent variable does not establish which method appears more suitable than 
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the other, and adds to the previous findings in which each technique alternatively performed 

better than the alternative algorithm.  

 
IF the accident occurs with only one vehicle involved, 
AND the accident takes place inside an urban area and not in an intersection, 
AND at least one of the drivers involved has a previous speed violation 
THEN the likelihood of the accident being a collision with an object is 76.4% 
IF the accident occurs with more than two and up to four vehicles involved, 
AND the accident takes place inside an urban area and in an intersection, 
AND the traffic light in the location of the accident is functioning properly, 
AND the width of the road where the accident occurs is up to 5 m., 
AND the accident results in light injuries 
THEN the likelihood of the accident being a front/back collision is 72.6% 
IF the accident occurs with more than two and up to four vehicles involved, 
AND the accident takes place inside an urban area and in an intersection, 
AND the road junction is regulated according to a “stop” sign, 
AND the accident results in light injuries 
THEN the likelihood of the accident being a front/side collision is 92.4% 
IF the accident occurs with more than two and up to four vehicles involved, 
AND the accident takes place inside an urban area and in an intersection, 
AND the road junction is regulated according to a “right of way” sign 
THEN the likelihood of the accident being a front/side collision is 83.4% 
IF the accident occurs with more than two vehicles involved, 
AND the accident occurs with only two private vehicles involved, 
AND the width of the road where the accident occurs is between 5 and 7 m., 
AND the allowed speed is 50 km/h 
THEN the likelihood of the accident being a front/side collision is 75.8% 
IF the accident occurs with only one vehicle involved, 
AND the accident occurs with one pedestrian involved and crossing the road, 
AND the accident occurs with one private vehicle involved 
THEN the likelihood of the accident being a collision with a pedestrian is 99.9% 

TABLE 12. Rules for C5.0 tree with CBS data - accident type 

IF the accident occurs with only one vehicle involved, 
AND the allowed speed is 50 km/h, 
AND at least one of the drivers involved has a previous speed violation 
THEN the likelihood of the accident being a collision with an object is 70.6% 
IF the accident occurs with more than two vehicles involved, 
AND the accident takes place inside an urban area and not in an intersection, 
AND the road where the accident occurs is one way 
THEN the likelihood of the accident being a front/back collision is 69.2% 
IF the accident occurs with two vehicles involved, 
AND the accident takes place outside an urban area and in an intersection, 
AND the road junction is regulated according to a “stop” sign 
THEN the likelihood of the accident being a front/side collision is 94.4% 
IF the accident occurs with two vehicles involved, 
AND the accident takes place outside an urban area and in an intersection, 
AND the traffic light in the location of the accident is either blinking or not working, 
AND the accident happens in the afternoon or in the evening 
THEN the likelihood of the accident being a front to side collision is 91.3% 

TABLE 13. Rules for CHAID tree with CBS data - accident type 
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IF the accident occurs with two vehicles involved, 
AND the accident takes place inside an urban area and in an intersection, 
AND the road junction is regulated according to a “right of way” sign 
THEN the likelihood of the accident being a front/side collision is 89.7% 
IF the accident occurs with two vehicles involved, 
AND the accident takes place inside an urban area and in an intersection, 
AND the road traffic light in the location of the accident is functioning properly, 
AND the accident occurs with one motorcycle involved 
THEN the likelihood of the accident being a front/side collision is 78.1% 
IF the accident occurs with only one vehicle involved, 
AND the accident occurs with one pedestrian involved and crossing the road, 
AND the accident occurs with one private vehicle involved 
THEN the likelihood of the accident being a pedestrian collision is 99.9% 

TABLE 13. Rules for CHAID tree with CBS data - accident type (continued) 

5.1.3 Neural networks 

Neural networks generated connections between input variables and output predictors, and 

processed the same database used for the construction of the decision trees. As neural 

networks are more complex to interpret with respect to decision trees, the relative importance 

of the input variables helps understanding the network model. 

5.1.3.1 Day / night 

The constructed neural network determined that the type of accident, the existence of previous 

alcohol or drug violations by at least one driver involvement of pedestrians, the type of 

control in the intersections as well as the type of vehicles involved were the most relevant 

input variables to predict whether the accidents happened during day or night. The network 

generated two hidden layers between the input and output layers according to the exhaustive 

prune algorithm. The estimated precision during the training and test phase reached 65.8%, 

and this value was confirmed by the value of the prediction accuracy equal to 66.4% when the 

estimated model was applied to crashes who took place in the year 2004, with an excess of 

accidents that actually occurred at day that were assigned at night. 

Note that these results were different from the results obtained with the decision tree 

algorithms, where the season in which the collision happened and the type of accident were 

the most relevant fields. With this respect, table 14 orders the most relevant input variables 

for the estimated model, with the importance of the input variables varying between 0 (no 

relevance) and 1 (complete explanation).  
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VARIABLES RELATIVE IMPORTANCE 

type of accident 0.2679 

alcohol or drugs offences 0.2089 

regulation of intersection 0.2009 

season of the accident 0.1733 

private vehicles 0.1589 

heavy commercial vehicles 0.1506 

light commercial vehicles 0.1248 

motorcycles 0.1133 

other variables < 0.1000 

TABLE 14. Relevant input variables for MLP network with CBS data - day / night 

Since this illustrative example, it appears clear that the neural network produced similar 

results in terms of predictive ability, and the cost in terms of computational time is sensibly 

higher, as the convergence of the network took around two hours while the convergence of a 

decision tree takes less than two minutes. Further, the interpretation of the neural network 

seems far more complicated than the interpretation of the decision trees, as the graphical 

representation of figures 14 and 15 exemplifies. 

Figure 14 illustrates the circular representation of the neural network, in which input and 

output variables are collocated in a circle and the connections from the input to the output 

variables are represented with various degree of thickness directly proportional to the strength 

of the connections. 

Figure 15 presents the reticular representation of the neural network, in which input variables 

are collocated in the design space according to their distance from the output variables. The 

connections are thicker when they are stronger, and if possible the interpretation of the results 

appears even more difficult than with the circular representation. 

This problem of the interpretation of the results in neural network implementation is opposed 

to the relative easiness of interpretation of the rules generated with the decision trees, giving 

the edge to the latter techniques for predictive purposes. 
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FIGURE 14. Example of neural network with circular representation 

 

FIGURE 15. Example of neural network with reticular representation 

 58



5.1.3.2 Accident severity 

The MLP network estimated that the outcome of the accident in terms of severity was 

explained mainly by the type of accident and the involvement of bicycles, motorcycles, 

commercial vehicles. The network constructed two hidden layers and reached a precision of 

86.6% during the training and test phase, exactly identical to the prediction accuracy when 

comparing the predicted values with the actual outcomes of crashes occurred in the year 2004.  

This high predictive ability does not actually indicate that the model is good, since the actual 

confusion matrix indicates that the model predicts almost all accidents as resulting in light 

injuries. This means that the previous model that employed the predictor day / night was a 

better model, despite the 20% incorrect forecasts in excess with respect to this one. This 

problem, encountered also with the CHAID algorithm but at a lesser extent, remarks that the 

evaluation of the goodness of the model is not only related to the prediction accuracy, but also 

to the actual interpretability of the model itself.  

Table 15 details the most relevant variables to classify whether accidents resulted in fatalities 

or severe or light injuries. 

  

VARIABLES RELATIVE IMPORTANCE 

accident type 0.1478 

bicycles 0.1340 

motorcycles 0.1122 

private vehicles 0.0731 

heavy commercial vehicles 0.0589 

allowed speed 0.0537 

location of the accident 0.0474 

regulation of intersection 0.0436 

condition of infrastructure 0.0433 

speed offences 0.0407 

other variables < 0.0400 

TABLE 15. Relevant input variables for MLP network with CBS data - accident severity 
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Again, the significant higher computational cost did not produce any advantage in terms of 

model fit, providing more insight into the evaluation of the decision trees as better methods 

than neural networks. 

5.1.3.3 Accident location 

When analyzing the location of the accident, two input variables were largely more significant 

than any other to explain where the accident occurred: the type of control of the intersections 

and the allowed speed. Table 16 details the most relevant input variables in predicting the 

location of the accidents.  

 

VARIABLES RELATIVE IMPORTANCE 

regulation of intersection 0.3889 

allowed speed 0.3458 

number of ways on the road 0.0404 

type of accident 0.0287 

other variables < 0.0200 

TABLE 16. Relevant input variables for MLP network with CBS data - accident location 

This is the first dependent variable to produce results similar to one of the decision tree 

algorithms, precisely the one constructed by CHAID method. The estimated precision in 

training was equal to 81.1%, and the prediction accuracy reached 81.4% when the forecasted 

results were compared to the observed locations for crashes taken place in the year 2004. 

The confusion matrix in tables 17 provides further evidence of the problem described in the 

previous section: the high predictive ability does not reflect the goodness of the model, as any 

accident was predicted to be located in an intersection outside an urban area. The first column 

emphasizes that the model did not predict any accident to happen in an intersection outside an 

urban area, and almost all the actual crashes that occurred in similar locations were forecasted 

to intersection, but in urban areas. The remaining part of the matrix shows great accuracy in 

the predictions. 

Note that the inaccuracy is somewhat different with respect to the previous case. The accident 

severity was probably influenced by the fact that one category, crashes that resulted in light 

injuries, is dominant over the others. The same does not apply to the accident location, where 
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none of the categories is dominant, and the problem is related to the model rather than to the 

data. 

 

 INTERURBAN 
INTERSECTION 

INTERURBAN 
SECTION 

URBAN 
INTERSECTION 

URBAN 
SECTION 

INTERURBAN 
INTERSECTION 0 135 1909 66 

INTERURBAN 
SECTION 0 2182 0 431 

URBAN 
INTERSECTION 0 6 6280 558 

URBAN 
SECTION 0 194 1 5975 

TABLE 17. Confusion matrix for MLP network with CBS data - accident location 

5.1.3.4 Accident type 

The last dependent variable analyzed with the neural networks is the type of accident. The 

most relevant input fields for this categorical variable with numerous categories were the 

involvement of pedestrians, either crossing the road or simply standing close to the road, the 

number and the type of vehicles involved as well as the existence of previous speed or alcohol 

violations by at least one driver. Table 18 summarizes the relative importance of the input 

fields. 

 

VARIABLES RELATIVE IMPORTANCE 

location of crossing pedestrians 0.1094 

number of vehicles involved 0.1054 

location of standing pedestrians 0.0890 

private vehicles 0.0617 

speed offences 0.0385 

alcohol or drugs offences 0.0298 

public vehicles 0.0291 

light commercial vehicles 0.0279 

other variables < 0.0250 

TABLE 18. Relevant input variables for MLP network with CBS data - accident type 
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The estimated precision during the training and test phase was equal to 74.0% and the 

prediction accuracy with respect to collisions that happened in the year 2004 was 74.5%. As 

for the decision trees, the neural network model predicted correctly in particular front/side and 

front/back collisions, as well as collisions with objects and pedestrians. This is actually the 

first variable that the neural network forecasted with accuracy, even though at a slightly lower 

level than decision trees and at an extremely higher computational cost.  

5.1.4 Association rules 

Association rules were applied with a different approach with respect to the other data mining 

techniques, at least with respect to the data perspective. The analysis focused on black spots, 

which are defined as specific locations in the road network where the frequency of fatalities 

results higher than the expected average. 

For this reason the list of the black spots defined for the Israeli road network was matched to 

the accident data in order to create an additional field. This “black spot” variable was actually 

a binary field, where 1 indicated that the accident occurred in a black spot and 0 otherwise, 

and was assumed to be the categorical predictor for the analysis. Given the definition and the 

construction of the black spot data and the strict correlation with the severity of the accidents, 

not surprisingly the results were not enlightening as fatal accidents resulted to happen in black 

spots. 

Given the difficulties of working with this variable, the database was divided into two parts: 

accidents occurred in black spots and accidents taken place in other network sections. The 

severity of the accidents was considered as categorical dependent variable and an association 

rule algorithm with very restrictive parameters, described in the methodological section as a 

confidence rule equal to 90% and a support equal to 5%, was tested. The Apriori algorithm 

produced around 5,000 rules for both parts of the database, and interestingly the lift of these 

rules was highly comparable and for every rule was around one.  

This meant that any of the rules was clearly discernible among the thousands generated, and 

that any attempt to synthesize the results would have been based purely on personal criteria, 

rather than objective. Considering that the literature exhibited the very same problem of 

selecting rules among the thousands, the existing papers in the specific subject did not 

enlighten with this respect, the association rules algorithm were discarded under the 
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motivation that the results were not interpretable and consequently the method was not 

suitable for further analysis.  

5.2 Enlarged database 

As previously stated, the present analysis elaborated the accidents between 1996 and 2000. 

The variables considered for descriptive and predictive analysis are illustrated in table 19, and 

include some information retrieved from the census about the drivers involved in the accident. 

The amount of missing data and the necessity of understanding the relative characteristics of 

drivers and vehicles involved suggested the creation of new variables according to the 

principles described in section 4.2.  

Note that for predictive purposes the dataset was divided into a training set, containing the 

accidents occurred between 1996 and 1999, and a test set, including the crashes happened in 

2000. The nature of the neural network elaboration, that randomly divides the input dataset 

into training and test sets, considers the database accounting for the collisions taken place in 

2000 as the validation set. 

Among the variables considered, three dependent variables were considered suitable: accident 

location, accident severity and accident type. The day / night variable was not considered in 

this phase, given the illustrative and testing purpose of the model estimation with this 

predictor in the first phase of the research. 

 

VARIABLES CATEGORIES 

accident severity 1. fatal accident – 2. severe injury – 3. light injury 

accident type 
1. pedestrian – 2. front/side crash – 3. front/rear crash – 4. side/side 
crash – 5. front/front crash – 6. collision with stopped or parked car 
– 7. collision with object – 8. rolling/slipping – 9. other crashes  

accident modality 
1. entrance of intersection – 2.exit of intersection – 3. parking or 
gas station – 4. slope – 5. curve – 6. bridge or tunnel – 7. railway 
crossing – 8. straight road or junction – 9. other 

accident cause 1. offense of the driver – 2. pedestrian action – 3. passenger 
behavior – 4. cyclist behavior – 5. car malfunctioning – 6. other 

accident location 1. urban intersection – 2. urban section – 3. interurban intersection 
– 4. interurban section 

allowed speed 1. 50 km/h – 2. 60 km/h – 3. 70 km/h – 4. 80 km/h – 5. 90 km/h – 
6. 100 km/h 

day / night 1. day – 2. night 

type of day 1. Sunday to Thursday - 2. Friday, Saturday and holidays 

TABLE 19. Categorical variables for descriptive and predictive analysis – Enlarged database 
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season of the accident 1. spring – 2. summer – 3. autumn – 4. winter 

weather conditions 1. clear – 2. rainy – 3. hot – 4. foggy – 5. other 

number of ways on the road 1. one way – 2. two ways with separation line – 3. two ways 
without separation line – 4. other 

median on the road 1. painted line – 2. safety rail – 3. no safety rail – 4. non built 
separation – 5. other 

shoulders of the road 1. good condition – 2. bad condition – 3. rough road – 4. bad 
condition and rough road 

width of the road 1. up to 5 m. – 2. 5 to 7 m. – 3. 7 to 10.5 m. – 4. 10.5 to 14 m. – 5. 
over 14 m. 

signals on the road 
1. no control – 2. functioning traffic light – 3. malfunctioning 
traffic light – 4. blinking yellow – 5. stop sign – 6. right of way sign 
– 7. other 

lights on the road 
1. normal daylight – 2. limited visibility because of the weather – 3. 
night with lighting – 4. night without lighting – 5. malfunctioning 
lighting – 6. unknown night conditions  

surface conditions of the road 1. dry – 2. wet from water – 3. wet from slippery material – 4. 
covered with mud – 5. covered with sand – 6. other 

type of collision with objects 
1. with street signal – 2. with safety rail – 3. with building – 4. with 
bridge – 5. with light or phone pole – 6. with tree – 7. with other 
object 

distance of colliding objects 1. up to 1 m. – 2. up to 3 m. – 3. object on the road – 4. object on 
the median – 5. unknown position of the object 

Jewish drivers 1. at least a Jewish driver involved – 2. no Jewish driver involved 

Moslem drivers 1. at least a Moslem driver involved – 2. no Moslem driver 
involved 

Christian drivers 1. at least a Christian driver involved – 2. no Christian driver 
involved 

drivers of the same religion 1. same religion – 2. different religion 

gender of the drivers 1. two male drivers – 2. male and female drivers – 3. female drivers 

origin of the drivers 1. two drivers born in Israel – 2. one driver born in Israel and one 
driver born abroad – 3. two drivers born abroad 

age of the drivers 
1. same generation – 2. one generation of difference – 3. two 
generations of difference – 4. three or more generations of 
difference 

experience of the drivers 1. at least one inexperienced driver – 2. two averagely experienced 
drivers – 3. at least one very experienced driver 

speed offences 1. at least one driver with previous speed violations – 2. no driver 
with previous speed violations 

private vehicles 0. no private vehicle involved - 1. one private vehicle involved – 2 
two private vehicles involved  

public vehicles 0. no public vehicle involved - 1. one public vehicle involved – 2 
two public vehicles involved  

light commercial vehicles 0. no light commercial vehicle involved - 1. one light commercial 
vehicle involved – 2 two light commercial vehicles involved 

heavy commercial vehicles 
0. no heavy commercial vehicle involved - 1. one heavy 
commercial vehicle involved – 2 two heavy commercial vehicles 
involved 

motorcycles 0. no motorcycle involved - 1. one motorcycle involved – 2 two 
motorcycles involved  

bicycles 0. no bicycle involved - 1. one bicycle involved – 2 two bicycles 
involved  

TABLE 19. Categorical variables for descriptive and predictive analysis – Enlarged database (continued) 
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Note that drivers were considered belonging to the same generation if their age difference was 

less than 15 years, with two or more generations defined accordingly to multiple of this value. 

Drivers were considered inexperienced if they obtained their license in the three years prior to 

the accident and very experienced if driving for more than 15 years.   

5.2.1 Clustering 

The determination of the number of clusters followed the same logic explained for the other 

data source, and resulted from the elaboration of the previous data source supported this 

choice. Accordingly, K-means clustering was applied by generating solutions with 5, 6 and 7 

clusters, and Kohonen networks were constructed by experimenting linear maps with 5 and 6 

clusters for method comparison, as well as additional bi-dimensional maps. The non-linear 

maps exhibited again problems of convergence, related to the incapacity the algorithm of 

creating clusters satisfying the necessary property of adjacent clusters to share characteristics.  

Table 20 shows the number of cases assigned to each cluster for each K-means run and each 

Kohonen network map. From the perspective of the number of records included in each 

cluster, the two methods provided sensibly different results. 

K-MEANS K-MEANS K-MEANS KOHONEN KOHONEN KOHONEN NUMBER 
OF 

RECORDS 5 
CLUSTERS 

6 
CLUSTERS 

7 
CLUSTERS 

1×5  
MAP 

1×6  
MAP 

3×3  
MAP 

cluster 1 31300 31273 31255 43797 29963 19165 

cluster 2 18142 11630 11605 926 13858 2978 

cluster 3 11666 19563 7342 25160 6902 30599 

cluster 4 18657 18413 18117 5049 20181 2362 

cluster 5 26047 11371 11365 30880 4170 1046 

cluster 6  13562 12939  30738 2262 

cluster 7   13189   29050 

cluster 8      236 

cluster 9      18114 

TABLE 20. Number of records per cluster – Enlarged database 
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The Kohonen networks concentrated the majority of the records in part of the clusters, even in 

the solution with 5 clusters one does not contain even 1000 cases, and this tendency is even 

more evident in the 3×3 map, where only four clusters include more than 90% of the records.  

The K-means algorithm distributed the cases homogeneously among the clusters, and 

exhibited the property already discussed of dividing bigger clusters in smaller parts when 

their number was increased. 

The semantic definition of the clusters constituted again a difficult task and relied on the 

frequency analysis of the categories for the input variables. 

The first solution with 5 clusters generated by the K-means algorithm defined the following 

groups: 

1. accidents that involved pedestrians, mostly in urban areas and not in intersections, on 

narrow roads without safety rail (31,300 cases); 

2. accidents between two private vehicles, mostly in urban areas and in intersections 

regulated either with traffic light, right of way or stop sign (18,142 cases); 

3. accidents that involved a motorcycle, mostly in urban areas between drivers with 

similar experience and similar age (11,666 cases); 

4. accidents between a private vehicle and either a light commercial vehicle, a heavy 

commercial vehicle, a motorcycle, mostly in urban areas and in narrow roads (18,657 

cases); 

5. front to side accidents that happened in urban areas, mostly during day in junctions 

between drivers with similar age, same religion and same experience (26,047 cases). 

The solution with 6 clusters divided the fifth cluster into accidents that occurred during day 

and accidents that occurred during night. In addition to this division, the solution with 7 

clusters split the second group according to the same principle, collisions happening during 

day versus collisions happening during night.  

The first solution originated from the Kohonen network with a linear map 1×5 identified the 

following clusters: 
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1. front to side accidents that happened in urban areas, mostly in intersections in narrow 

roads between drivers of similar age and same religion (43,797 cases); 

2. front to side accidents that occurred during day, mostly in intersections either inside or 

outside urban areas (926 cases);  

3. accidents that took place in urban areas, between two private vehicles or a private 

vehicle and light commercial vehicles, with drivers of different religions (25,160); 

4. accidents that happened not in intersections between a private vehicle and either a 

public vehicle, a light commercial vehicle or a motorcycle (5,049 cases);  

5. accidents that involved pedestrians, mostly in urban areas and in narrow roads without 

safety rail, and between Jewish drivers one of which was born in Israel and the other 

was born abroad (30,738 cases). 

The second solution generated from the Kohonen network with a linear map 1×6 exhibited the 

same property shown by the K-means algorithm, as the first group of the five-clusters solution 

was split into two groups, the first containing the accidents happening at day and the second 

including the crashes occurring at night.  

The solution from the Kohonen network with 3×3 map was far more complicated to interpret, 

especially since at least four clusters present similar characteristics without a clear cut 

distinction among one another and a fifth group contains only a couple hundred cases. The 

remaining four clusters were similar to the groups in the initial solution from the 1×5 map, 

excluding the cluster constituted by accidents that involved pedestrians. 

Note that the results from the Kohonen networks exhibited the same property already faced, 

consisting in the fact that the importance of the vicinity property caused non-linear maps not 

to converge because similarities among adjacent clusters were not found and all the cases 

were linked to a restricted number of clusters. Again, in the 3×3 map the least significant 

clusters were positioned in the middle of the map and separated the remaining resulting 

groups. 

Note also that the clusters from different techniques have different characteristics, but this 

difference appears less accentuated with the analysis of this data source, as for example both 

methods defined a cluster with pedestrian involved in the collisions. K-means also 
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distinguished a cluster with motorcycles implicated in the crash, and in general exhibited the 

characteristic that the typology of the vehicle played a significant role in generating the 

groups, as well as the typology of collision. Again, given also the difficulties of Kohonen 

networks to converge with bi-dimensional map configuration, K-means algorithm appeared 

more appropriate from the accident analysis perspective. 

5.2.2 Decision trees 

Decision trees generated hundreds of rules that allowed classifying the accidents according to 

the selected predictors. The following section details the most relevant results for each 

dependent variable considered in this second phase of the study. 

5.2.2.1 Accident severity 

The implemented decision trees produced different results when the categorical output 

variable was the severity of the accidents. Interestingly, the C5.0 tree reached only three 

levels of depth and determined as the most significant input variables the cause, the typology 

and the location of the crash. The CHAID tree was much deeper and the most relevant fields 

were the typology and the location of the collision, as well as the illumination on the road and 

the type of vehicles involved. The prediction accuracy for C5.0 and CHAID was equal to 

85.6% and both techniques failed to forecast fatal accidents when the predicted values were 

compared to the actual locations for collisions happened in the year 2000. 

For this reason the only rules for crashes resulting in severe injuries are summarized in tables 

21 and 22. Note that not only two rules were produced for C5.0 method and one rule was 

generated for CHAID technique, but also the likelihood of accidents resulting in severe 

injuries were below 50%, to emphasize the problems regarding the analysis of a categorical 

predictor in which one category is dominant over the others. 

  
IF the cause of the accident is the action of a pedestrian,  
AND the accident occurs with at least one pedestrian involved, 
AND the accident occurs outside an urban area and not in an intersection 
THEN the likelihood of the accident resulting in a severe injury is 49.5% 
IF the cause of the accident is the action of a pedestrian,  
AND the accident occurs with at least one pedestrian involved, 
AND the accident occurs outside an urban area and in an intersection 
THEN the likelihood of the accident resulting in a severe injury is 46.9% 

TABLE 21. Rules for C5.0 tree with enlarged data - accident severity 
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IF the accident occurs with at least one pedestrian or a car rolling involved,  
AND the accident takes place outside an urban area 
THEN the likelihood of the accident resulting in a severe injury is 42.8% 

TABLE 22. Rules for CHAID tree with enlarged data - accident severity 

Among the rules, the involvement of pedestrians in the accident or the rolling of a vehicle 

appeared more relevant to the outcome of the accident, partly confirming the previous finding 

that single-vehicle accidents produced more severe outcomes in terms of injuries. 

5.2.2.2 Accident location 

Considering the location of the accident as the categorical dependent variable, the generated 

decision trees resulted not completely different. For the C5.0 tree, the most relevant variables 

to explain the location were the typology of accident, the illumination conditions on the road, 

the width of the road and the involvement of motorcycles. For the CHAID tree, the most 

significant fields were the regulation of the intersections, the typology of the accident, the 

width of the road and the involvement of motorcycles. The prediction accuracy for the C5.0 

algorithm was equal to 56.9% and for the CHAID algorithm was equal to 77.0%. 

Note that the same difference was found for the analysis of the previous data source, and the 

confusion matrices in tables 23 and 24 provide insight into the different predictive 

performances between the two techniques. Remind that the rows represent the actual 

observations and the columns the predicted values, consequently the elements in the diagonal 

constitute the correct predictions for accidents happened in 2000, based on the models 

estimated with the accidents occurred between 1996 and 1999. 

 

 INTERURBAN 
INTERSECTION 

INTERURBAN 
SECTION 

URBAN 
INTERSECTION 

URBAN 
SECTION 

INTERURBAN 
INTERSECTION 35 119 1053 399 

INTERURBAN 
SECTION 22 962 634 1062 

URBAN 
INTERSECTION 27 101 4737 1970 

URBAN 
SECTION 15 357 1892 4347 

TABLE 23. Confusion matrix for C5.0 tree with enlarged data - accident location 
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 INTERURBAN 
INTERSECTION 

INTERURBAN 
SECTION 

URBAN 
INTERSECTION 

URBAN 
SECTION 

INTERURBAN 
INTERSECTION 0 0 1606 0 

INTERURBAN 
SECTION 0 747 14 1919 

URBAN 
INTERSECTION 0 0 6835 0 

URBAN 
SECTION 0 466 78 6067 

TABLE 24. Confusion matrix for CHAID tree with enlarged data - accident location 

Both algorithms failed to predict crashes occurring outside urban areas in intersections, and 

even though the prediction accuracy of the CHAID tree was superior, this method completely 

ignored this category of collisions. The CHAID algorithm almost perfectly forecasted the 

location of accidents in urban areas to either intersections or sections, but failed to allocate 

outside urban areas the crashes while exactly inserting them in either road junctions or road 

sections. The errors of the C5.0 method were more distributed and did not exhibit a specific 

pattern. 

Some rules with higher confidence level are illustrated in table 25 and 26. Rules for accidents 

taking place in interurban junction do not show confidence levels over 40% and are not 

reported. The only rule with confidence level over 60% for accidents occurring in interurban 

section generated with CHAID algorithm is presented for illustrative purposes. Accidents in 

interurban sections occurred mainly at night when artificial illumination was not present and 

the road was averagely wide, and raining conditions had an effect as well. In urban areas, 

pedestrians and motorcyclists were often involved in crashes that happened mainly in narrow 

roads at day, and collisions with objects occurred at night when artificial  illumination was not 

present.  

 
IF the accident is a front to side collision, 
AND the accident occurs in a curve, 
AND the accident occurs at night without lighting 
THEN the likelihood of the accident occurring in an interurban section is 90.0% 
IF the accident is a car rolling out of the road, 
AND the accident happens during night without artificial lighting, 
AND the width of the road where the accident occurs is between 7 and 10.5 m. 
THEN the likelihood of the accident occurring in an interurban section is 86.0% 

TABLE 25 Rules for C5.0 tree with enlarged data - accident location 
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IF the accident is a car rolling out of the road, 
AND the accident happens during day, 
AND the width of the road where the accident occurs is between 7 and 10.5 m., 
AND the accident happens in rainy weather, 
AND the surface of the road is wet 
THEN the likelihood of the accident occurring in an interurban section is 68.3% 
IF the accident is a front to side collision, 
AND the accident results in light injuries,  
AND the accident occurs with one motorcycle involved, 
AND the accident happens during night, 
AND the width of the road where the accident occurs is between 7 and 10.5 m. 
THEN the likelihood of the accident occurring in an urban intersection is 78.1% 
IF the accident is a front to side collision, 
AND the accident results in light injuries, 
AND the accident occurs with one motorcycle involved, 
AND the accident happens during day, 
AND the width of the road where the accident occurs is between 5 and 7 m. 
THEN the likelihood of the accident occurring in an urban intersection is 75.2% 
IF the accident is a collision with an object, 
AND the accident happens during night without artificial lighting, 
AND the width of the road where the accident occurs is up to 5 m. 
THEN the likelihood of the accident occurring in an urban section is 74.6% 
IF the accident is a front to side collision, 
AND the accident results in light injuries, 
AND the accident occurs with one motorcycle involved, 
AND the accident happens during day,  
AND the width of the road where the accident occurs is up to 5 m. 
THEN the likelihood of the accident occurring in an urban section is 67.4% 
IF the accident occurs with at least one pedestrian involved, 
THEN the likelihood of the accident occurring in an urban section is 67.4% 

TABLE 25. Rules for C5.0 tree with enlarged data - accident location (continued) 

IF the accident is a front to side collision, 
AND the accident results in light injuries,  
AND the accident occurs with one motorcycle involved, 
AND the accident happens during night, 
AND the width of the road where the accident occurs is between 7 and 10.5 m. 
THEN the likelihood of the accident occurring in an urban intersection is 78.1% 
IF the accident is a front to side collision, 
AND the accident results in light injuries, 
AND the accident occurs with one motorcycle involved, 
AND the accident happens during day, 
AND the width of the road where the accident occurs is between 5 and 7 m. 
THEN the likelihood of the accident occurring in an urban intersection is 75.2% 
IF the accident is a collision with an object, 
AND the accident happens during night without artificial lighting, 
AND the width of the road where the accident occurs is up to 5 m. 
THEN the likelihood of the accident occurring in an urban section is 74.6% 
IF the accident is a front to side collision, 
AND the accident results in light injuries, 
AND the accident occurs with one motorcycle involved, 
AND the accident happens during day,  
AND the width of the road where the accident occurs is up to 5 m. 
THEN the likelihood of the accident occurring in an urban section is 67.4% 
IF the accident occurs with at least one pedestrian involved, 
THEN the likelihood of the accident occurring in an urban section is 67.4% 

TABLE 26. Rules for CHAID tree with enlarged data - accident location 
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IF the regulation of the intersection is missing 
AND the width of the road where the accident occurs is between 7 and 10.5 m., 
AND the accident is a car rolling or slipping out of the road 
THEN the likelihood of the accident occurring in an interurban section is 62.1% 
IF the regulation of the intersection is blinking yellow, 
AND the accident occurs with at least one pedestrian involved 
THEN the likelihood of the accident resulting in an urban intersection is 96.4% 
IF the regulation of the intersection is blinking yellow, 
AND the accident is a front to front collision, 
AND the accident occurs with at least one motorcycle involved 
THEN the likelihood of the accident resulting in an urban intersection is 95.5% 
IF the regulation of the intersection is a “right of way” sign, 
AND the width of the road where the accident occurs is over 7 m., 
AND the accident occurs with at least one woman involved 
THEN the likelihood of the accident resulting in an urban intersection is 91.1% 
IF the regulation of the intersection is blinking yellow, 
AND the accident is a front to front collision,  
AND the drivers involved are both Jewish, 
AND the drivers involved are a man and a woman 
THEN the likelihood of the accident occurring in an urban intersection is 87.5% 
IF the regulation of the intersection is missing 
AND the width of the road where the accident occurs is between 7 and 10.5 m., 
AND the accident is a front to side collision, 
AND the accident occurs with at least one motorcycle involved 
THEN the likelihood of the accident occurring in an urban section is 90.7% 
IF the regulation of the intersection is missing 
AND the width of the road where the accident occurs is between 5 and 7 m., 
AND the accident results in fatalities or severe injuries 
THEN the likelihood of the accident occurring in an urban section is 90.4% 
IF the regulation of the intersection is missing 
AND the width of the road where the accident occurs is over 10.5 m., 
AND the accident occurs with at least one pedestrian involved 
THEN the likelihood of the accident occurring in an urban section is 89.1% 
IF the regulation of the intersection is missing 
AND the width of the road where the accident occurs is up to 5 m., 
AND the accident is a front to side collision, 
AND the drivers involved are both Jewish 
THEN the likelihood of the accident occurring in an urban section is 88.7% 

TABLE 26. Rules for CHAID tree with enlarged data - accident location (continued) 

5.2.2.3 Accident type 

When using the typology of accidents as the dependent categorical variables, the two 

algorithms produced different trees. For the C5.0 tree, the most significant fields were the 

cause of the accident, the surface conditions, the existence of previous speed violations by one 

of the drivers and the location of the accident. For the CHAID tree, the most relevant 

variables were the involvement of motorcycles, the regulation of the intersection, the 

population group of the drivers and the width of the road. The prediction accuracy for the 

C5.0 algorithm was equal to 58.6% and for the CHAID algorithm was equal to 73.8%, with 

an interesting disparity with respect to the predictive ability measured with the first dataset. 
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The C5.0 algorithm forecasted accurately front to side collisions and accidents with 

pedestrians involved, even though part of the latter was classified as the former. The CHAID 

technique predicted accurately front to side collisions, crashes with pedestrians implicated and 

accidents where cars rolled or slipped out of the road.  

Some of the rules for accident type forecasts are illustrated in table 27 and 28, and since the 

confidence levels for most of the accident types reached values under 50%, the reported rules 

are some of the most significant ones.  

 
IF the accident is caused by the driver behavior, 
AND the accident takes place inside an urban area and not in an intersection, 
AND the accident occurs in a curve, 
AND the accident happens during day, 
AND the surface is wet from water 
THEN the likelihood of the accident being a front to front collision is 53.4% 
IF the accident is caused by the driver behavior, 
AND at least one driver involved has previous speed violations,  
AND the accident takes place inside an urban area and in an intersection, 
AND the surface condition is dry, 
AND the accident results in light injuries, 
AND the regulation of the intersection is a “stop” sign, 
THEN the likelihood of the accident being a front to side collision is 77.5% 
IF the accident is caused by the driver behavior, 
AND at least one driver involved has previous speed violations,  
AND the accident takes place inside an urban area and in an intersection, 
AND the surface condition is dry, 
AND the accident results in light injuries, 
AND the regulation of the intersection is a “right of way” sign, 
THEN the likelihood of the accident being a front to side collision is 72.3% 
IF the accident is caused by the driver behavior, 
AND the accident takes place inside an urban area and in an intersection, 
AND the accident results in fatalities, 
AND the regulation of the intersection is a working traffic light, 
AND the accident happens during day 
THEN the likelihood of the accident being a collision with a pedestrian is 73.1% 

TABLE 27. Rules for C5.0 tree with enlarged data - accident type 

The absence of traffic lights appears related to the majority of the front/side collisions, while 

pedestrians are involved in crashes at intersection in urban areas Basically front/side and 

pedestrian collisions were the typologies with higher confidence levels, and it appears that 

pedestrian are involved in accidents in urban areas, in junctions with narrow roads and large 

roads. 
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The prediction accuracy is higher for the CHAID method, as it was for the other predictors, 

and with this data source it appears that this algorithm outperforms systematically the C5.0 

technique. The same conclusion could not be drawn while analyzing the other data source. 

 
IF the accident occurs with no motorcycle involved, 
AND the regulation of the intersection is either blinking yellow or a “right of way” sign,  
THEN the likelihood of the accident being a front to side collision is 93.2% 
IF the accident occurs with at least one motorcycle involved, 
AND the regulation of the intersection is either blinking yellow or a “stop” sign,  
THEN the likelihood of the accident being a front to side collision is 92.9% 
IF the accident occurs with at least one motorcycle involved, 
AND the regulation of the intersection is either blinking yellow or a “right of way” sign,  
THEN the likelihood of the accident being a front to side collision is 88.6% 
IF the accident occurs with no motorcycle involved, 
AND the accident occurs with two private vehicles involved, 
AND the regulation of the intersection is a malfunctioning traffic light, 
AND both drivers involved are Jewish,  
THEN the likelihood of the accident being a front to side collision is 82.4% 
IF the accident occurs with no motorcycle involved, 
AND the accident takes place inside an urban area and in an intersection, 
AND the width of the road where the accident occurs is between 5 and 7 m. or between 10.5 and 14 m. 
THEN the likelihood of the accident being a collision with a pedestrian is 91.7% 
IF the accident occurs with no motorcycle involved, 
AND the accident takes place in an urban area and in an intersection, 
AND the width of the road where the accident occurs is up to 5 m. 
THEN the likelihood of the accident being a collision with a pedestrian is 73.8% 

TABLE 28. Rules for CHAID tree with enlarged data - accident type 

5.2.3 Neural networks 

The links between input and output variables were constructed by the MLP networks that 

processed the same data source used for the elaboration of the decision trees. The relative 

importance of the input fields was considered to interpret the network model. 

5.2.3.1 Accident severity 

The neural network evaluated that the severity of the accident was explained mainly by the 

type of accident, the location of the crash and the existence of previous speed offences by one 

of the drivers involved. The network generated two hidden layers and reached a precision of 

86.1% during the training phase, while the prediction accuracy was slightly different (85.4%) 

when compared to the outcome of accidents taken place in the year 2000. Table 29 

summarizes the most relevant variables when the classification of the accidents according to 

the severity is performed. 
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As seen for the decision trees, the actual confusion matrix indicates that the fatal accidents are 

not correctly forecasted, even though slightly more severe accidents are predicted. Most 

important, the substantially higher computational cost did not produce any significant 

advantage in terms of predictive ability, consequently confirming that decision trees are better 

and more efficient methods than neural networks. 

 

VARIABLES RELATIVE IMPORTANCE 

type of accident 0.1727 

location of the accident 0.0990 

speed offences 0.0612 

shoulders on the road 0.0608 

private vehicles 0.0576 

lights on the road 0.0575 

width of the road 0.0573 

public vehicles 0.0505 

other variables < 0.0500 

TABLE 29. Relevant input variables for MLP network with enlarged data - accident severity 

5.2.3.2 Accident location 

When analyzing the location of the accident, the most significant variables were the typology 

of accident, the illumination on the road, the width of the road and the regulation of the 

intersections. Table 30 details the most relevant input variables in predicting the location of 

the accidents.  

The estimated precision during the training stage was equal to 80.4%, and the predictive 

ability was equal to 79.7% when the predicted values were confronted with the observed 

locations for accident occurred in the year 2000.  

The confusion matrix in table 31 illustrates further the problem described in the previous 

sections: the high prediction accuracy does not necessarily represent a good model, as any 

accident that actually took place in a junction was allocated to an urban area and the same 

happened to any crash that actually occurred far from a junction. At least for interurban 
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sections half of the collisions were correctly allocated, while for the lower right part of the 

matrix the precision accuracy is almost perfect.  

 

VARIABLES RELATIVE IMPORTANCE 

accident type 0.1423 

lights on the road 0.1140 

width of the road 0.0852 

accident severity 0.0821 

regulation of the intersection 0.0816 

motorcycles 0.0701 

collision with an object 0.0529 

weather 0.0467 

other variables < 0.0400 

TABLE 30. Relevant input variables for MLP network with enlarged database - accident location 

 INTERURBAN 
INTERSECTION 

INTERURBAN 
SECTION 

URBAN 
INTERSECTION 

URBAN 
SECTION 

INTERURBAN 
INTERSECTION 84 0 1522 0 

INTERURBAN 
SECTION 0 1434 0 1246 

URBAN 
INTERSECTION 99 0 6736 0 

URBAN 
SECTION 0 727 3 5881 

TABLE 31. Confusion matrix for MLP network with enlarged data - accident location 

5.2.3.3 Accident type 

The last dependent variable considered for neural network analysis is the typology of 

accident. The most relevant input variables for this predictor were the object with which there 

was the collision, the cause and the location of the accident and the condition of the road 

surface. Table 32 illustrates the relative importance of the input fields. 

The estimated precision during the training stage was equal to 73.2% and the prediction 

accuracy with respect to accidents that took place in the year 2000 was 74.8%. As for the 

decision trees, the neural network model predicted correctly in particular front/side collisions, 
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as well as crashes with objects and pedestrians. Again, neural networks produced comparable 

results with respect to decision trees, but at much more expensive computational costs. 

 

VARIABLES RELATIVE IMPORTANCE 

object collided 0.2266 

cause of the accident 0.1218 

location of the accident 0.1063 

condition of the road surface 0.0482 

regulation of the intersection 0.0439 

other variables < 0.0400 

TABLE 32. Relevant input variables for MLP network with enlarged data - accident type 

As for the other dependent variables, the most relevant input variables were the characteristics 

of the accident and of the vehicles, rather than the characteristics of the drivers. The decision 

trees produced rules in which some of the latter variables were relevant, but most likely the 

amount of missing data caused the analysis to rely on the variables most frequent in all the 

records. For this reason the collision characteristics probably resulted more relevant for the 

accident analysis. 
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6 Conclusions and further research 

This study focused on one hand on the search for the most promising data mining techniques 

for accident analysis, and on the other hand on the analysis of accident data to provide some 

classification and predictive rules to understand accident occurrence. 

Accordingly, the presentation of the conclusions and the proposition of further research 

develop in three mainstreams that constitute the main elements of this research: the data 

mining techniques, the accident data and the safety recommendations from the application of 

the former to the latter. 

6.1 Data mining techniques 

This research studied initially several data mining techniques and focused on the 

understanding of both descriptive and predictive methods. The initial selection of eligible 

techniques for this study was based on literature survey findings, which proposed the test 

implementation of some among the large number of alternative techniques available. 

Namely, the descriptive techniques that were suitable for categorical data were K-means 

clustering and Kohonen networks, while the predictive methods that were suitable for the 

same type of data were CHAID and C5.0 algorithms for the construction of decision trees, the 

MultiLayer Perceptron neural networks and the Association Rules algorithms.  

Descriptive techniques were useful to classify the large amount of analyzed accidents, and 

between the two techniques considered, K-means clustering appeared to be more effective. 

Clusters from the K-means algorithm appear to be more clear-cut defined and classification is 

less trivial than the one obtained with the Kohonen networks, where the occurrence of the 

accident during day or during night seemed to be the most relevant factor to identify 

similarities among the collisions. The limit of descriptive techniques is that for safety analysis 

they do not provide indications different from the mere description of the main characteristics 

of the accidents, and for this reason predictive methods have to be considered more suitable. 

Among the different techniques analyzed, the less satisfying has been the search for 

Association Rules. The number and the quality of the hundreds of rules generated did not 

allow to provide significant results and this technique was not considered extensively in the 

research for these difficulties of interpretation of the findings of the rules. 
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Neural networks presented a similar problem of interpretation of the results, especially in 

terms of understanding the relative importance of the inputs and of the intermediate neurons 

that constituted the two hidden levels connecting inputs and outputs. The definition of the 

outputs was a general problem in the prediction phase, as neural networks and decision trees 

require the apriori definition of the output variables and consequently highly depend on this 

variable choice. 

Decision trees performed better than neural networks in terms of definition of clear rules that 

illustrate the most relevant variables for the outcome of an accident according to the different 

categories of the output variable (for example the location of the accident). According to the 

experience developed in this research, decision trees with CHAID algorithm produced the 

most promising results in terms of predictive accuracy and interpretability of the rules. C5.0 

algorithm also performed satisfactorily, but failed to predict some of the categories for some 

of the output variables. 

From a general perspective, once a problem is assigned and an output variable is accordingly 

defined, decision trees appear the most promising techniques to investigate the problem and 

provide rules able to explain the phenomenon. The extraction of the rules is extremely simpler 

than with neural networks, and the different algorithms help treating any different type of 

variables (nominal, ordinal, categorical etc.), just as in this research the CHAID algorithm 

was the most suitable to the available data.  

6.2 Accident data 

This research exploited two different databases. On one hand a database was constituted by 

information concerning the collision, from its nature to its location, from the infrastructure to 

the atmospheric conditions, from some general characteristics of the drivers to some general 

description of the vehicles involved. On the other hand a database was constituted by detailed 

information concerning the drivers and the vehicles that took part into the collision. 

The first problem concerning the data is related to the fact that, when the two sources were 

merged, some of the information from the first database was removed to account for the 

increase of detail at the driver and vehicle level. This trade-off in terms of accuracy had a high 

cost in terms of missing data: for example the exact location of the accident was removed 

from the file in order to provide details of the drivers. This implied a loss of information 

especially regarding some of the infrastructure characteristics, such as the median condition, 
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that appeared relevant when analyzing only the accident characteristic. As expected, analysis 

of data with large number of missing values had implications on the quality of the results. 

The second problem concerning the data is related to the nature of the information itself. Most 

of the variables included in the database are categorical, and they are pre-defined without the 

possibility of working on the definition of the categories themselves for the different 

variables. Accordingly, the analysis is influenced by the constrained definition of the 

categories, which are used in the data mining implementation as they were pre-defined. 

Accident location for example were classified according to four categories (urban vs. 

interurban and intersection vs. section), and results show that this classification was too 

general. 

The conclusion of this research is that the importance of the data is extremely crucial when 

data mining and accident analysis are involved. Further, more independence should be given 

to the analyst, in the sense that data should be as general as possible in the description of the 

information, in order for the analyst to work on the definition of the classification. Of course, 

more accuracy in the collection of the information regarding the accidents would be welcome, 

as not only missing data are frequent, but also errors in the data gathering. 

6.3 Safety recommendations 

This study focused on different data mining techniques and allowed to understand which 

methods are more suitable for analyzing accident categorical data. The results of the 

implementation of these techniques, presented in chapter 5, exhibit quite complex 

relationships between the explanatory variables and the chosen dependent variables. 

Accordingly, it results extremely difficult to pinpoint clear safety recommendations from the 

rules defined for example with the decision trees or the neural networks.  

This study does not provide a ranking or a quantitative measure of the relative importance of 

the explanatory variables. Nevertheless, some variables were found more significant than 

others and appeared more frequently in the clusters and in the rules, according to the 

techniques implemented and the output variables considered.  

From the analysis of the results, it appears evident that there are safety issues with respect to 

accidents involving pedestrians, as their number is quite high and typically involve 

pedestrians not in intersections that cross roads where the allowed speed is around 90 km/h, or 
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pedestrians that cross roads in winter or with bad weather. The first typology suggests 

problems in the behavior of the pedestrians that perhaps underestimate the time necessary to 

cross, while the second typology suggests problems in the behavior of the drivers that perhaps 

have limited visibility also because of lack of prudence in difficult driving conditions. From 

the analysis of the accident rules, it appears also clear that the regulation of the traffic plays a 

significant role. Not only respecting signals or traffic lights would reduce the likelihood of 

front to side accidents, the most recurring collisions in the country, but also checking for their 

correct functioning as non-working traffic lights appear related to high likelihood of accident 

occurrence. 

The accident severity seems to be influenced mainly by the typology of vehicles involved. 

Note that when bicycles, motorcycles and heavy commercial vehicles take part into the 

collision, the outcome results more severe than when only private vehicles are implicated. 

According to the same principle, the involvement of pedestrians produces more severe 

injuries and fatalities in crashes. Also relevant for the severity of the accident are the 

conditions of the road and the illumination on the infrastructure. 

The accident location looks as if it is affected by the existence of previous speed violations by 

at least one of the implicated drivers, the number of vehicles involved and the typology of the 

accident. Typically, accidents in interurban intersections occur mainly in conditions of limited 

visibility and when the median is not constructed, that leads to think about problems of speed 

violations. This concept is confirmed by the rules regarding crashes in interurban sections, for 

example with single-vehicle accidents where car getting off the road. In urban areas, 

pedestrians, cyclists and motorcyclists are often involved, and in this case supposedly 

sometimes their behavior causes the crashes that result immediately in severe consequences. 

As clearly noticed throughout the research, this study did not concentrate on a single issue and 

focused on the analysis of the potential of data mining techniques. Given the absence of focus 

on a more specific safety issue, the broad amount of results is more difficult to interpret and 

clear safety recommendations are more difficult to provide.  

6.4 Further research 

According to the presented conclusions, this report intends to provide some guidelines for 

further research in the same three mainstreams that constitute the main elements of the study. 
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In data mining, this study focused mainly on methods that exploited pre-specified dependent 

variables and tested several models that work with these variables. Predictive models that do 

not require apriori output variable, such as association rules, did not produce satisfactory 

results and at the same time leaved the door open to further investigation. 

Most likely association rules require additional investigation and contemporaneously more 

work on the data format in order to produce a reasonable number of logical and interpretable 

rules. The further study of the implementation of association rules algorithm, not largely 

explored in literature, is a possible development of this research. 

With respect to the data gathering, data need refinement both from a quantitative and a 

qualitative perspective. From the quantitative perspective it would be ideal not to have a 

trade-off between enrichment and accuracy of the databases. From the qualitative perspective 

it appears necessary a better definition of some elements that are of interest when analyzing 

accidents.  

For example, the attempted analysis of the black spot influence on the accident occurrence 

gave evidence that the definition of the black spots needs reconsideration (or actual 

recalculation) as the data mining techniques were not able to classify accidents in black spots 

differently from accidents not in black spots. This was a consequence of the definition of 

black spots not as critical points in the network, but as sections between intersections, even of 

few kilometers.  

With respect to safety recommendations, this research focused on several accident issues 

rather than on specific problems. Some models analyzed accidents according to their location, 

other models according to their severity, but any specific issue (for example pedestrian 

accidents) was considered extensively, also because this was an exploratory study about the 

potential of data mining techniques. Accordingly, conclusions in terms of safety indications 

are partly missing the mark, even though the research was successful in terms of 

comprehending the potential of data mining techniques and the requirements of the databases 

for obtaining meaningful results. 

The main recommendation for further research is to specify a clear safety question, and 

through the specification of this issue to analyze the problem with both suitable data mining 

techniques and data definition. 
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